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Introduction

Modeling of subducting plate (SP)/overriding plate (OP) interaction along the
subduction interface (SI)

6 J. C. Duarte, W. P. Schellart and A. R. Cruden

of paraffin oil (Fig. 2 and Table 2). It is also observed that once
the yield stress has been overcome, the shear stress drops due to
strain softening and with increasing strain approaches a steady-state
value, referred to here as the flow stress. Values of the flow stress
clearly decrease with increasing paraffin oil content (Fig. 2). In all
samples the yield stress is higher than the flow stress, except for the
90 per cent mixture, which shows no strain softening behaviour. In
this paper, we report five experiments covering the range of mixtures
from 55 to 90 per cent paraffin oil (Table 2), which was the range
over which progressive subduction developed.

Subduction stopped in a very early stage in all experiments that
used mixtures with a paraffin oil content below 55 per cent. In some
experiments with very strong mixtures (=55 per cent paraffin oil)
and high coupling, a period of double-sided subduction occurred
(i.e. simultaneous subduction of both subducting and OPs), with
the development of Raleigh–Taylor instabilities at the base of the
plates. Conversely, when coupling was too low the plates sepa-
rated, leaving a vacant region filled in with UM material. Even
though some of the experiments failed to produce long-term sub-
duction or were somewhat unrealistic (e.g. double-sided subduc-
tion), we have used them to understand, improve and adjust our
apparatus. In the following sections we analyse in detail three rep-
resentative experiments with low, medium and very high mechanical
coupling along the interplate zone and evaluate the impact of the
degree of coupling on subduction dynamics, kinematics and OP
deformation.

3 R E S U LT S

3.1 Dynamics and kinematics of subduction

Photos of progressive stages of Experiments 10, 9 and 12, with
low, medium and very high mechanical coupling, respectively, are
shown in Fig. 3 and the results of five experiments are given in
Tables 3 and 4. The total time for the entire slab to be subducted
for Experiments 9–11 increased with the increase of the interplate
mechanical coupling (Table 3). In the two experiments with very
high and extreme coupling (Experiments 12 and 14) subduction
stalled after 6720 and 10 400 s, respectively. The initial stages of
all experiments were characterized by slab sinking and steepening
(Fig. 3), as well as rapid increases in the trench retreat velocity (vT)
and in the SP (vSP) and OP (vOP) trenchward velocities (Fig. 4).
The SP velocity reached a local or absolute maximum at a time just
before the slab tip touched the bottom of the tank (blue arrows in
Fig. 4), while the first maximum in the trench velocity corresponds
to the time just before the plates came into full contact (red arrows
in Fig. 4). Moreover, the period between the initial stage of each
experiment and the moment when the slabs touched the bottom of
the tank increased with increasing values of mechanical coupling in
the interplate zone [∼500, 1500 and 2800 s, scaling to ∼4, 13 and 23
Ma, for low, medium and very high coupling, respectively; and with
peak subduction velocities (vS) of 0.2, 0.07 and 0.055 mm s–1—
scaling to 12, 4.2 and 3.5 cm yr–1 in nature].

In the low coupling Experiment 10, the slab steepening was less
pronounced and once the slab touched the bottom of the tank it
flattened and rolled back progressively (Fig. 3a), while the trench
retreated at an approximately steady velocity of ∼0.08 mm s–1, scal-
ing to 4.8 cm yr–1 (Fig. 4a and Table 4), to a total of 242 mm, scaling
to 1212 km. Trench retreat in this experiment was accommodated by
OP trenchward displacement (a total of 166 mm, scaling to 832 km)

Figure 3. Sequential side-view photographs of the three-subduction experi-
ments with different degrees of mechanical coupling at the subduction zone
interface (Experiments 10, 9 and 12, with low (Mix 90 per cent), medium
(Mix 80 per cent) and very high (Mix 60 per cent) mechanical coupling, re-
spectively). Note that the percentages always refer to the relative amount
(weight per cent) of paraffin oil in the mixtures of petrolatum and paraffin
oil. The duration of each period is given in seconds (and scaled time). See
text for detailed description of the experiments.
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3.3. Overriding Plate Deformation

[22] The trench velocity is always higher than the overri-
ding plate velocity at its trailing edge, and the overriding
plate accommodates this difference by stretching in the di-
rection of trench retreat. By measuring the displacement of
the passive markers along the centerline of the overriding
plate, the incremental strain of each segment between
markers can be calculated during each time interval by
dividing the finite difference in length after a time interval
by the initial length, following:

e ¼ L2� L1ð Þ=L1 (2)

where L1 and L2 are the initial length and the length after a
time interval, respectively.
[23] In all experiments, overriding plate deformation is

characterized and dominated by extension (Figures 7 and 8).
Overriding plate shortening has not been observed, except
potentially for veryminor shortening near the edge of the over-
riding plate in experiment 5 with TOP= 0.5 cm (Figure 8b).
Considering that the maximum error in strain in Figure 8 is
�4%, this apparent shortening might not be real. The

horizontal strain rate of the overriding plate follows the dy-
namics of the subduction system. The (local) maximum in ex-
tension rate during the early free-sinking stage for each indi-
vidual experiments corresponds with the (local) maximum in
trench retreat velocity (cf. Figure 7a with vT⊥ in Figure 3).
Furthermore, the (local) minimum extension rate for the
experiments during the slab tip-bottom boundary interaction
phase corresponds with the (local) minimum in vT⊥. Also,
the trends in the curves for extension rate and vT⊥ during the
steady-state rollback phase are very similar for individual
experiments. Figure 7b shows positive linear correlations
between vT⊥ and trench-normal strain rate for all experiments
with an overriding plate, where an increase in extensional
strain rate corresponds with an increase trench retreat velocity.
Those experiments with a thin overriding plate (0.5 and
1.0 cm) particularly show strong correlations (R2 = 0.89 and
0.78). The correlations confirm that the overriding plate
accommodates trench retreat partly by stretching.
[24] The total horizontal overriding plate strain along the

length of the overriding plate shows that deformation is
not homogeneously distributed (Figure 8). The maximum
total extension along the centerline is located at ~4.0–8.0 cm
from the trench, corresponding to ~200–400 km in nature
(Figure 8a). This distance is independent of the thickness of

Figure 6. Variation in trench curvature as a function of overriding plate thickness. (a–c) Top view
photographs of three experiments after 27 cm of subduction (scaling to 1350 km), with (Figure 6a)
experiment 6 (TOP=0), (Figure 6b) experiment 5 (TOP=1.0 cm), and (Figure 6c) experiment 10 (TOP=2.5 cm).
(d) Trench curvature at three different stages of subduction (14, 27, and 37 cm of subduction for blue
diamonds, green triangles, and red crosses, respectively) for six subduction experiments with different
overriding plate thicknesses (TOP = 0–2.5 cm). Note that trench curvature is expressed as 1/r2, where r is
the radius of curvature, which is measured for the innermost 10 cm of the plate. Error bars are given for data
points in Figure 6d. Continuous lines in Figure 6d are exponential best-fit lines, with coefficients of
determination R2 = 0.84 (blue diamonds), R2 = 0.69 (green triangles), and R2 = 0.67 (red crosses).

MEYER AND SCHELLART: 3-D SUBDUCTION WITH AN OVERRIDING PLATE

782

Duarte et al. (2013) Meyer et al. (2013)Trench migration and overriding plate stress 187

Figure 15. Evolution of the horizontal deviatoric normal stress in the trench region and overriding plate for models with variable overriding plate buoyancy
and a free OP (see Fig. 13). Upper panels (a–d) show the positively buoyant overriding plate model (ρop − ρm = −130 kg m−3), centre panels (e–h) show the
neutrally buoyant OP model (ρop = ρm), and lower panels (i–l) show the negatively buoyant OP model (ρop − ρm = 130 kg m−3). For detailed caption, see
Fig. 4.

increase from wedge to SP. This effect is of importance in models
with variable ρop, and is discussed in more detail in Section 4.2.2,
but is of secondary importance relative to the vertical restriction of
large-scale mantle flow.

We find that the OP does not significantly affect plate advance
velocity (VP), and so the presence of an OP alters the partioning of
subduction between plate advance and trench retreat by reducing VT

to a value comparable to VP (i.e. reduces VT / VP). This is consistent
with previous modelling work (Capitanio et al. 2010a; Schellart &
Moresi 2013), and the observation that, in nature, trench motion
is typically smaller than plate motions (e.g. Heuret & Lallemand
2005). Thus, while rollback is ‘slab-driven’ in our models of free
subduction (e.g. Elsasser 1971; Kincaid & Olson 1987; Stegman
et al. 2006; Schellart 2008a), it is affected by the OP and its me-
chanical properties even in models where the OP is free to move.
In contrast, Capitanio et al. (2010a) find that the presence of a free
OP does not modify how subduction is partitioned between rollback
and plate advance. As other parameter values are comparable, this
is potentially due to the very strong SP core (3000ηmantle) used by
Capitanio et al. (2010a), which increases the stiffness of the SP
hinge. As is observed in previous two-plate modelling studies (e.g.
Capitanio et al. 2010a; Meyer & Schellart 2013), the vertical sinking
velocity (VZ) is unaffected by the style of OP. This suggests that the
mechanical properties of the SP, namely the negative buoyancy and

hinge stiffness (∝ plate viscosity × thickness3, for an isoviscous
plate), control slab sinking (Conrad & Hager 1999).

When the slab subducts beneath an OP that is fixed to the edge
of the box, which is perhaps analogous to a large continental OP
with low plate velocity (Forsyth & Uyeda 1975), we find that rate of
trench retreat is significantly reduced (e.g. Capitanio et al. 2010a,b).
This occurs because, in models with fixed OPs, slab rollback is
inhibited by the tensile strength of the OP (Ribe 2001: ∝ η′

ophop),
as the OP must be stretched for rollback to occur. Therefore, a fixed
OP exerts a much stronger control on slab rollback than a free OP,
further reducing VT from its single plate rate (e.g. Capitanio et al.
2010a,b).

4.1.2 Role of viscosity stratification

In our reference model, we include a factor 50 increase in the back-
ground viscosity at a depth of 660 km by increasing the prefactor in
our viscosity law (eq. 6; e.g. Enns et al. 2005; Garel et al. 2014). For
simplicity, we do not include other phase transitions, and the associ-
ated density/buoyancy effects (e.g. Tagawa et al. 2007a,b; Nakakuki
et al. 2010; Nakakuki & Mura 2013), which have been shown to
promote slab folding atop 660 km (Čı́žková & Bina 2013). Even
without density effects, which tend to inhibit penetration through

4.2. Influence of Subducting-Plate Age
Here we illustrate how the dynamics of subduction change as a function of subducting-plate age, using
models with an initially young (20 Myr) overriding plate (Table 2 and Figures 4 and 5a–5c). We identify three
different subduction modes, termed ‘‘inclined-strong retreat’’ (ISR), ‘‘horizontally deflected’’ (HD), and ‘‘verti-
cal folding’’ (VF). The first style (ISR, Figure 5a, Age0

SP 5100 Myr ), described in the previous section, is charac-
terized by rapid sinking and trench retreat, leading to an inclined slab that partly flattens upon interaction
with the upper-lower mantle interface (phase 2). In the second mode (HD, Figure 5b, Age0

SP 530 Myr ), the
slab sinks slowly, at first, and near-vertically through the upper mantle (phase 1). It is then deflected at the upper-
lower mantle interface, where it flattens (phase 2) and stagnates for a short period. In the third style (VF,
Figure 5c, Age0

SP 520 Myr ), the slab subducts vertically through the upper mantle (phase 1) before buckling
and folding upon interaction with the viscosity jump (phase 2) and sinking into the lower mantle. In this
case, the trench is quasi-stationary throughout.

We find that the older downgoing plates sink, subduct, and retreat faster (Table 2 and Figure 4). This is as
expected from previous free-subduction models in which both velocities increase with increasing negative
buoyancy. In addition, those models showed that high slab resistance to bending together with high den-
sity (which both increase with Age0

SP) leads to stronger retreat [Bellahsen et al., 2005; Schellart, 2008; Capita-
nio et al., 2007; Ribe, 2010; Stegman et al., 2010a]. Sinking rates as a function of age vary more strongly than
would be expected purely based on variations in slab buoyancy, as can be seen from the increase in V tmax

sink =

Figure 5. Comparison between subduction dynamics of systems with different initial subducting and overriding plate ages: (a) 100/20 Myr, (b) 30/20 Myr, (c) 20/20 Myr, (d) 100/100 Myr,
and (e) 30/65 Myr. Styles of subduction are described in more detail in sections 4.2–4.4
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Model setup

f r e e - s l i p  s u r f a c e
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s1 = 0 s2 = LOP

S1 S2

d1

dSI

η0, ρ0 V0 θ0

Purely viscous plate;

Infinitely deep ambient fluid;

Buoyancy-driven subduction;

Stokes equations of motion;

Boundary-element method.

Key dimensionless parameters
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Instantaneous convergence rate: VConv
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γ using observed VConv



Case study: central Aleutian subduction zone

Geometry and VConv from Lallemand et
al. (2005)

[8] The presentstatisticalstudy isbased on a
selection of159 ‘‘nonperturbed oceanic subduc-
tion’’ transectsamong the245 we havecom-
piled checking about50 rameters. We define
‘‘nonperturbed oceanic sction’’as any sub-
ductionof an oceanicplatebeneathanother
plate (continentalor oceanic)far from any
collision zone,ridgeor
green and pink in Figure3). A collision zone
meansthata continentalplate subductsbeneath
another plate.Such a geodynamic setting as well
as ridge orplateau subduction isoften accom-
panied by upperplate compression in the vicin-
ity of the collision and extension orextrusion
on the sides.The study ofsuch regionaleffects
needsspecialattention and areclearly beyond
the scope ofthe presentpaper.We have used a
samplingstepof about220 km of trenchto
extractthe transectswhich representnearly
36,000kilometersof trenches.This uniform
and systematicsamplinghas beenchosento
betteraccountfor the lateralvariationsalong
apparenthomogeneoussubduction segments.

[9] We then identified three groups within this set
(groups thatcould overlap;see Figure 3):(1) 114
‘‘regular’’in green;(2) 45 ‘‘near-edge’’in pink
when a transect is located within 400 km from the
termination ofa slab;and (3)39 transectsfor

which the slab penetrates into the lowermantle
according to available tomographic images (here-
after called ‘‘lower mantle slabs’’).These 39 tran-
sects include allcontinuous slabs with maximum
depthsexceeding 670 km,whethertheseare
straight or curved near the mantle discontinuity.

[10] In this study, we will discuss ten basic param-
eters and six combinationsof parameterswhich
appearto be relevantto slab dip (Figure 4;
Table 1).

[11] The geometryof the subductingplateis
parameterized according to slab dip,maximum
depth and length.Typically,slab dip increases
gradually from thetrench to adepth of80–
150 km.Beneath thisdepth,it remainsalmost
constantdown to thelimit between upperand
lowermantle where itmay be deflected.Aftera
carefulexamination ofslab geometries,we have
observed thatthe majorchangein dip occurs
around 125 km depth.In orderto minimize the
subjective biasinduced by the changesin slab
dip,we have defined a mean shallow dip between
0 and 125 km called as and a mean deep dip for
depths greaterthan 125 km called ad. For most
subduction zones,a ‘‘bestfit’’ of the upper
surfaceof the slabscan be madeusing the
distribution ofearthquakes’hypocenters.Trench-
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Quasi-2D subduction
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Rates of viscous dissipation of energy

Energy dissipation

Is mantle convection primarily resisted by the
deformation occurring at subduction zones (e.g.

Conrad&Hager, 1999) ?

Balance of mechanical energy

DTotal = DSI +DSP +DOP +DM

Rate of release of gravitational energy

DTotal = ∆ρ1g

∫
S1

ui(y)ni(y)yjdl(y)

Rate of viscous dissipation within
the subduction interface

DSI = 2ηSI

∫
ASI

eijeijdASI

Rate of viscous dissipation within the plates
from thin-sheet theory (Ribe, 2001):

DSP/OP =

∫
Ls

[
4ηihi∆

2(si)︸ ︷︷ ︸
stretching

+
1

3
ηih

3
i K̇

2︸ ︷︷ ︸
bending

]
dsi

∆= Midsurface stretching rate

K̇= Rate of change of midsurface curvature

i= 1 or 2 for SP and OP properties, respectively

Dissipation ratio

R =
DSP +DOP +DSI

DTotal
=

DBL

DTotal



SP+OP case: time dependent solutions
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SP+OP case: time dependent solutions
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Steady-state analysis of thermal convection (e.g. Turcotte & Schubert, 2014)

Geometry of the convecting cell:
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η0f2(θ) (1 + CR)

Geometrical effect DBL/DM

Weak BL (CR → 0)

Thermal thickening

hSP

H
∼
(
Lzf2(θ)

`Ram

)1/3

. Ram ≡
H3g∆ρ1

κη0

Nu ∼ Ram
1/3

(
`

Lzf2(θ)

)1/3



Steady-state analysis of thermal convection (e.g. Turcotte & Schubert, 2014)

Conrad&Hager (1999) approach: RaSP ≡
`3bg∆ρ1

κη1
, RaSI ≡

d3SIg∆ρ1

κηSI

DSP/SI � 1⇒ RaSP/SI � 1

VSink ∼ Ram
hSP`κ

f2(θ)H3
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RaSP

(
hSP

H

)3

F(θ)︸ ︷︷ ︸
SP bending

+
Ram

RaSI

(
hSP

H

)(
d2SI

H2sin(θSI)f2(θ)

)(
VConv

VSink
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︸ ︷︷ ︸
SI shearing

]−1

Strong BL (CR 6= 0, DSI = 0)

Thermal thickening
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∼
(

RaSP

Ram

Lzf2(θ)

RaSP`− f1(θ)Lz

)1/3

Nu ∼ Ram
1/3
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`

Lzf2(θ)
− F(θ)

RaSP

)1/3

Domain of validity

RaSPcr →
f1(θ)Lz

`
⇒ hSP →∞ Nu→ 0

BEM numerical solutions
(
λ1 ∈ [250− 2500]

)
RaSPcr ∈ [3− 10]

Upper mantle convection

Ram ∈ [105 − 106], H/hSP = 6.7

DSP/DM|cr ≥ 7⇒ Rcr ≈ 0.87



Steady-state analysis of thermal convection (e.g. Turcotte & Schubert, 2014)

Conrad&Hager (1999) approach: RaSP ≡
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DSP/DM|cr ≥ 7⇒ Rcr ≈ 0.87



Steady-state analysis of thermal convection (e.g. Turcotte & Schubert, 2014)

Conrad&Hager (1999) approach: RaSP ≡
`3bg∆ρ1

κη1
, RaSI ≡

d3SIg∆ρ1

κηSI

DSP/SI � 1⇒ RaSP/SI � 1

VSink ∼ Ram
hSP`κ

f2(θ)H3
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(
hSP

H

)(
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H2sin(θSI)f2(θ)

)(
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VSink
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SI shearing
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Strong BL (CR 6= 0, DSI = 0)

Thermal thickening

hSP
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∼
(

RaSP

Ram

Lzf2(θ)

RaSP`− f1(θ)Lz

)1/3
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1/3

(
`

Lzf2(θ)
− F(θ)

RaSP

)1/3

Domain of validity

RaSPcr →
f1(θ)Lz

`
⇒ hSP →∞ Nu→ 0

Upper mantle convection
Ram ∈ [105 − 106], H/hSP = 6.7

Rcr ≈ 0.87

BEM numerical solutions
(
λ1 ∈ [250− 2500]

)
R ∈ [0.3− 0.5]



DSP evaluation

DSP ∼ L−3 → L= length scale describing the bending response of the SP

α

1

10

102

103

1

10

102

103

Ĥ = H/hSP
2 3 4 5 6 7 8 9 10

2 3 4 5 6 7 8 9 10

λ1 = 2500
λ1 = 250

Ĥ1 Ĥ2

R = 0.92

R = 0.88

Overestimation

• α =
DSP|Rmin

DSP|`b
=

(
`b
Rmin

)3

• DSP depends strongly on L and
H

• hSP ≈ 100 km, H ≈ 1000 km and
Rmin ≈ 400 km
⇒ α ≈ 102 (R > 0.9)

• Conrad&Hager (1999): H ≈ 2500
km and Rmin ≈ 200 km
⇒ α > 102



Conclusions

Subduction zone interface
The strength of the interface and the flexural stiffness of the SP strongly affect VConv;

The comparison of the predicted VConv of our numerical simulations with the observed values
given by Lallemand et al. (2005) regarding the central Aleutian slab suggests γ ∈ [2− 6].

Energetics of subduction
When subduction starts DSI can give the highest contribution to the the deformation of the BL
(60% for λ1 = 250). As subduction proceeds, its importance diminishes;

For viscosity ratios ∈ [250− 2500] and H/hSP ∈ [2− 7], R = DBL/DM ∈ [0.3− 0.5].

Global-scale mantle convection models
Combining our numerical solutions with the steady-state boundary layer analysis of upper mantle
convection we find Nu ∼ Ram

1/3f(RaSP)1/3;

A wrong length scale can lead to a strong overestimation of DSP which, in turn, increases as we
consider a thicker convecting cell.



ExtraSlide: BEM formulation

Boundary-Integral representation

∆ρ1

η0

∫

S1

(g · y)n(y) · J(y − x)dl(y) +
∆ρ2

η0

∫

S2

(g · y)n(y) · J(y − x)dl(y)+

+(1− λ1)

∫

S1

u(1)(y) ·K(y − x) · n(y) + (1− λ2)

∫

S2

u(2)(y) ·K(y − x) · n(y) =

=

{
(1 + λ1)/2 u(1)(x), if x ∈ S1

(1 + λ2)/2 u(2)(x), if x ∈ S2

}

Nondimensionalization

(x̂, ŷ) = h−1
1 (x,y) û = u

η0

h2
1g∆ρ1

t̂ = t
h1g∆ρ1

η0



ExtraSlide: Bending length definition

`b
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(∆), rotation (ω) and change of
midsurface curvature (K̇):
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Bending moment M :
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ExtraSlide: Values of γ from other works

Table: Dimensionless interface strength of different subduction models. Asterisks indicate studies where
γ has been inferred by comparison with geophysical observations.

Study Type γ λ1 Rheology

This study* Numerical 2.0-6.3 150-450 Linear
Meyer&Schellart (2013) Experimental 0.13-0.43 200 Linear
Duarte et al. (2015)* Experimental ≤ 90 160 Linear (visco-plastic interface)
Chen et al. (2015) Experimental 5.3-10.00 200 Linear (visco-plastic interface)
Holt et al. (2015) Numerical 0.73-1.80 100-2000 Visco-plastic
Klein et al. (2015)* Numerical 0.17-1.3 Elastic lithosphere Visco-elastic asthenosphere

(inversion from GPS data)



ExtraSlide: Rate of release of gravitational energy

Dissipation and rate of working for a volume V of fluid bounded by a surface S:

2η

∫

V
eijeijdV

︸ ︷︷ ︸
Total rate of viscous

dissipation in V

=

∫

S
uiσ̂ijnjdS

︸ ︷︷ ︸
Rate at which work is

performed on S by

the modified stress:
σ̂ = σ + ρgzI

Rate of release of gravitational energy

DTotal =

∫

S1

ui(y)σ̂
(1)
ij (y)nj(y)dl(y) +

∫

S1

ui(y)σ̂
(0)
ij (y) (−nj(y)) dl(y)

= ∆ρg

∫

S1

ui(y)ni(y)yjdl(y) where y ∈ S1 and (σ̂
(1)
ij − σ̂

(0)
ij )nj = ni∆ρgyj



ExtraSlide: SP only case-scaling analysis

SP’s portion dynamically relevant

s = 0

x 2

x 1

η1, ρ1hSP

η0, ρ0 θ0

V

b̀

Viscous dissipation within the SP
Bending-dominated ⇒

∼ K̇

⇒ DSP ∼ η1h3
SP

(
V

`2b

)2

(`b)f1(θ0)

Viscous dissipation within the mantle

DM ∼ η0
(
V

`b

)2

(`2b)f2(θ0)

∼ eij ∼ AM

Dissipation ratio

R ∼ St

St + F(θ0)

Dynamical effect

Geometrical
effect

⇒ Plot R vs. St for different θ0



ExtraSlide: DSP/DM overestimation

α = (`b/Rmin)3

α
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Ĥ
2 3 4 5 6 7 8 9 10

R̂min
ˆ̀
b



ExtraSlide: β for constant hSP

β =
1/2

1 + CR

β

0.01

0.1

0.01

0.1

CR

0.001 0.01 0.1 1 10 100

0.001 0.01 0.1 1 10 100 Table: Values of the energetical ratio CR|L and the
corresponding exponent β|L for L = `b or Rmin.

Ĥ1 = 6.7 λ1 CR|`b CR|Rmin β|`b β|Rmin

250 0.27 8.91 0.39 0.05

2500 0.44 7.04 0.35 0.06

Ĥ2 = 10 λ1 CR|`b CR|Rmin β|`b β|Rmin

250 0.55 73.7 0.32 ≈ 0

2500 0.60 30.6 0.31 0.02



ExtraSlide: Rmin vs `b (Ribe, 2010)

Flexural Stiffness of the plate: St ≡ Fint

Fdrag
= γ

(
h

L

)3

566 N. M. Ribe

Figure 6. Time evolution of the bending length �b(t) (upper curves) and
the minimum radius of curvature Rmin(t) for the three simulations of Fig. 2.
The viscosity contrast γ for each curve is indicated.

its whole length. Moreover, significant bending also occurs seaward
of the trench, over a distance that increases with increasing γ . The
‘flexural bulge’ produced by this bending is observed seaward of
many trenches on Earth (Watts & Talwani 1974; Turcotte et al.
1978).

Motivated by the curves of Fig. 5, I now define the ‘bending
length’ �b as the length of the portion of the sheet’s midsurface
where the curling rate K̇ (s) is significantly different from zero.
To make this definition mathematically precise in the context of
the present model, I take �b to be the distance from the end of the
sheet’s midsurface (excluding the rounded ‘endcap’) to the first zero
of K̇ (s) to the left-hand side of the point where this function has its
global minimum. This definition is illustrated in Fig. 5 for the curve
K̇ (s) at the initial instant of the simulation with γ = 100 in Fig. 2.
However, the bending length is also defined at all later instants,
and typically increases monotonically with time because the slab is
continually lengthening. Fig. 6 shows this for the three simulations
of Fig. 2. For comparison, Fig. 6 also shows the sheet’s minimum
radius of curvature Rmin(t) for the same three simulations. Unlike
�b(t), Rmin(t) initially decreases and then increases more slowly.
These contrasting behaviours show that the length scales �b(t) and
Rmin(t) are fundamentally different in character, as discussed in
more detail in Section 8.

With the definition of �b in hand, I now consider the balance of
forces (per unit length in the x3-direction) acting on the bending
portion of the sheet at an arbitrary instant in time. The traction
σ 1 applied to this portion by the outer fluid is σ 1 ∼ η1V /�b, which
implies a total (integrated with respect to arclength) force F1 ∼ η1V .
Thin-sheet theory (Ribe 2001) shows that the internal traction σ 2

that resists the bending is σ 2 ∼ M ′′ ∼ η2 h3V /�4
b, which corresponds

to a force F2 ∼ η2h3V /�3
b. Finally, because the negative buoyancy

of the ‘plate’ portion of the sheet is compensated by normal stresses
in the lubrication layer, the effective buoyancy force Fb ∼h�g�ρ is
due entirely to the slab portion of length �. In the limit of negligible
bending resistance, the balance Fb ∼ F1 implies

V ∼ h�g�ρ

η1
≡ VStokes. (17)

Figure 7. Dimensionless sinking speed V /V Stokes of the slab as a function
of the sheet stiffness S, for three different values of the dip θ0. The geometry
of the sheet is as shown in Fig. 1. A total of 588 numerical solutions with
L/h = 16 are shown for d/h = 0.1 (open circles), d/h = 0.2 (black circles),
and different values of γ and �/h (see text).

Furthermore, the ratio of the internal and external viscous forces
acting on the slab is

F2

F1
∼ γ

(
h

�b

)3

≡ S. (18)

The quantity S is a dimensionless measure of the ‘stiffness’ of a
subducting sheet, and plays a fundamental role in controlling its
dynamics.

The above arguments suggest that it may be revealing to plot
the dimensionless sinking speed V /V Stokes versus S. Fig. 7 shows
such plots for a suite of 588 instantaneous BEM solutions obtained
with L/h = 16, seven different values of �/h (4 ≤ �/h ≤ 10),
two values of d/h (0.1 or 0.2), fifteen different values of γ (31.7 ≤
γ ≤ 105), and three values of θ 0(30◦, 60◦ and 90◦). For each value of
θ 0, all the solutions collapse onto a universal curve, independently
of the particular values of �/h, d/h or γ . These curves exhibit two
distinct limits. For large S � 1, the slope of each curve approaches
asymptotically the value −1, implying that V is controlled entirely
by the viscosity η2 of the sheet. Because the sheet’s resistance to
bending is the primary force resisting subduction when S � 1, I
shall call this the ‘flexural’ limit. For S ≤ 1, by contrast, the slope
of the curves in Fig. 7 is (nearly) zero, indicating that V is con-
trolled (almost) entirely by the viscosity η1 of the outer fluid. This
‘Stokes sinking’ limit corresponds to the unhindered sinking of a
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γ(h/`b)
3

Free subduction 567

Figure 8. Same as Fig. 7b, but rescaled as a function of the modified
stiffness S∗ = γ (h/Rmin)3.

plate-shaped object beneath a free surface, as discussed in more
detail in Appendix A.

The near-perfect collapse of the numerical data in Fig. 7 onto
universal curves demonstrates that the bending length �b is the
critical length scale governing the dynamics of a subducting slab.
The essential point is that �b exceeds the slab length � by a factor
that increases with the viscosity contrast (Fig. 5) because bending
stresses are significant in the region of flexural bulging seaward of
the trench. For the model geometry of Fig. 1, �b depends on γ ,
h, �, d and θ 0 in a rather complicated way that is determined in
Appendix B.

The key role of the bending length �b becomes still more manifest
when Fig. 7 is compared with the results of alternative rescalings.
In Fig. 8, the numerical data from Fig. 7b are rescaled in terms of
a modified stiffness S∗ ≡ γ (h/Rmin)3 that is obtained from (18)
by replacing �b by the sheet’s minimum radius of curvature Rmin.
Because the sheet’s shape is described analytically by (1), Rmin

= 2�/3θ0. When S∗ ≤ 3, all the data in Fig. 8 collapse onto the
same universal curve as in Fig. 7(b), unsurprisingly because bend-
ing stresses are negligible in that limit. For S∗ ≥ 10, by contrast,
the new rescaling breaks down, as indicated by the substantial scat-
ter of the data. The length scale Rmin is therefore not appropriate
for characterizing the sheet’s bending response. Moreover, because
Rmin ∝ � when θ 0 is constant, as it is in Fig. 8, it follows that the
slab length � is not appropriate either.

I turn now to the scaling law that governs the plate speed Up.
The numerical solutions show that this quantity, unlike the sinking
speed V , depends on the plate length L. The scaling law analogous
to (13) is therefore

Up

VStokes
= fct

(
γ,

L

�
,

L

h
,

d

h
, θ0

)
, (19)

where the argument �/h in (13) has been replaced by L/h with no
loss of generality. While it is possible to determine the complete
functional dependence (19), the result would be too complicated to
be illuminating. Instead, consider the simpler problem of how Up

depends on γ , L/� and �/h with θ 0 and d/h held fixed. Fig. 9 shows
Up/V Stokes as a function of S for θ 0 = 60◦, d/h = 0.2, and various
values of L/� and �/h. When L/� = 2 (plate length twice the slab
length), the curves of Up/V Stokes versus S are similar in shape to
those of V /V Stokes versus S (Fig. 7). In physical terms, this means
that the speed of a relatively short plate is entirely controlled by the
balance of the forces Fb, F1 and F2 acting on the attached slab.
As L/� increases, however, the additional drag force exerted on
the bottom of the plate by the ambient fluid becomes progressively
more important relative to Fb, F1 and F2, so that Up is reduced.
When L � �, the curves of Up versus S have strong local maxima,

Figure 9. Dimensionless plate speed Up as a function of S for θ0 = 60◦,
d0/h = 0.2, three values of L/� (indicated) and L/h = 32 (solid lines), 24
(dashed lines), and 16 (dotted lines.)

implying the existence of an ‘optimal’ viscosity contrast γ opt that
gives the fastest plate speed for a given sheet geometry. For L/� =
8 and L/h = 32, for example, γ opt ≈ 350.

6 M O D E S O F F R E E S U B D U C T I O N

The foregoing thin-sheet analysis revealed two critical parameters
that govern the dynamics of instantaneous subduction: the ‘bending
length’ �b and the dimensionless sheet ‘stiffness’ S. I now show
that these concepts also provide the key to understanding critical
aspects of time-progressive subduction, as observed in laboratory
experiments with viscous sheets sinking in a layer of fluid with a
lower viscosity and a finite depth (Bellahsen et al. 2005; Funiciello
et al. 2008; Schellart 2008). These experiments reveal that free
subduction can occur in five different styles or ‘modes’ depend-
ing on the experimental parameters, as summarized in Fig. 10. The
photographs in the left-hand column of Fig. 10 were taken before
the sheet’s leading end reached the bottom of the layer, and those in
the right-hand column some time afterwards. For γ ≤ 100, subduc-
tion occurs in a ‘dripping’ (D) mode (Fig. 10a). The slab descends
nearly vertically, and its thickness varies substantially as a function
of time and depth due to stretching in its upper part and shortening
in its lower part. The speeds of both the plate and the trench are
small in this mode. For intermediate viscosity contrasts 100 < γ ≤
104 (approximately), three different modes are observed, depending
on the plate’s thickness h and width w. In the ‘weak retreating’
(WR) mode (Fig. 10b), the sinking slab lies down more or less flat
on the bottom surface, and the trench ‘retreats’ to the left, that is,
in the direction opposite to that of the plate motion. The ‘folding
retreating’ (FR) mode (Fig. 10c) is similar, except that the slab folds
once on the bottom of the tank before steady-state trench retreat is
established. In the ‘advancing’ (A) mode (Fig. 10d), by contrast, the
sinking slab ‘bends over backwards’ against the bottom of the tank,
and thereafter the trench moves in the same direction as the plate.
Finally, for γ � 104 subduction occurs in a ‘strong retreating’ (SR)
mode (Fig. 10e), except if the plate is very thin, in which case the
advancing mode is observed.

On the basis of his own laboratory experiments and those pre-
viously performed by others, Schellart (2008) proposed a regime
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ExtraSlide: Definition CR (DSI = 0)

CR ≡
R

1−R =
DSP

DM
=

Ram

RaSP
F(θ)

(
hSP

H

)3

BEM numerical solutions
(
λ1 ∈ [250− 2500]

)

Ram
RaSP

∈ [100− 650] F(θ) ∈ [0.2− 0.8]

hSP

H
= 6.7 CR ≤ 1



ExtraSlide: SP only case- instantaneous solutions
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ExtraSlide: SP only case- instantaneous solutions
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ExtraSlide: SP+OP case-instantaneous solutions
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Steady-state analysis of thermal convection

Conrad&Hager (1999) approach: RaSP ≡
`3bg∆ρ1

κη1
, RaSI ≡

d3SIg∆ρ1

κηSI

DSP/SI � 1⇒ RaSP/SI � 1

VSink ∼ Ram
hSP`κ

f2(θ)H3
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Ram

RaSI

(
hSP

H

)(
d2SI

H2sin(θSI)f2(θ)

)(
VConv

VSink

)2

︸ ︷︷ ︸
SI shearing

]−1

Strong BL (CR 6= 0, DSI = 0)

Thermal thickening

hSP

H
∼
(

RaSP

Ram

Lzf2(θ)

RaSP`− f1(θ)Lz

)1/3

Nu ∼ Ram
1/3

(
`

Lzf2(θ)
− F(θ)

RaSP

)1/3

Domain of validity

RaSPcr →
f1(θ)Lz

`
⇒ hSP →∞ Nu→ 0

BEM numerical solutions
(
λ1 ∈ [250− 2500]

)
RaSPcr ∈ [3− 10]

Upper mantle convection
Ram ∈ [105 − 106], H/hSP = 6.7

DSP/DM|cr ≥ 7⇒ Rcr ≈ 0.87 > [0.3− 0.5]


