FROM MICROHABITAT TO ECOSYSTEM: ANALYSING THE SPATIO-TEMPORAL VARIABILITY OF SOIL CO, IN A KARST SHRUBLAND

^a Dept Desertification and Geo-Ecology, Experimental Station of Arid Zones (EEZA-CSIC), Almearía, Spain, ^b Inter-University Institute for Earth System Research (IISTA-CEAMA), Granada, Spain,

C. J. R. LOPEZ^a (lopezcle@gmail.com), E. P. SÁNCHEZ-CAÑETE^{b,c}, P. SERRANO-ORTIZ^{b,d}, A. LÓPEZ-BALLESTEROS^{a,d}, F. DOMINGO^a, A. S. KOWALSKI^{b,c} & C. OYONARTE^e. ^c Dept Applied Physics, University of Granada (UGR), Granada, Spain, and ^e Dept of Agronomy, University of Almería (UAL), Almería, Spain.

HIGHLIGHTS

- **Explored the variation of soil CO₂ in relation to its** biophysical drivers.
- Used a top-down statistical analysis and a wavelet time-frequency decomposition.
- \Box Identified poorly regarded drivers of soil CO₂ dynamics: microhabitat and wind.
- Provided new insight into soil CO₂ production and transport, and improves CO₂ emission modelling.

INTRODUCTION

Motivation

The soil CO₂ efflux (F_s) remains the least constrained component of the terrestrial carbon cycle; its estimates are still largely uncertain, mainly because of its considerable variation related to the many controlling factors that interact over different temporal and spatial scales.

Aims

- \Box To identify the biophysical drivers of the soil CO₂ molar fraction (χ_s) and characterize their timefrequency patterns in a karst shrubland.
- \Box To explore χ_s spatial variation with soil cover type (microhabitat).
- \Box To estimate soil CO₂ efflux (F_s) at the ecosystem scale.

MATERIAL & METHODS

Environmental measurements

Continuous measurements during *ca.* one year:

Figure 1 Experimental design.

Calculation of soil CO₂ effluxes

By applying Fick's first law:

Soil CO₂ efflux

Increment in CO₂ molar fraction between atmosphere and soil

Empirical soil CO₂ transfer coefficient

Data analysis

A top-down statistical protocol was used to model χ_{s} with environmental variables.

- A wavelet analysis was performed on main variables retained by the model.
- $\Box F_{c}$ was upscaled to the ecosystem scale by fractional cover of each considering the microhabitat.

RESULTS

Explanatory model of soil CO₂ dynamics The χ_s dynamics was affected differently by some variables depending on seasons and microhabitats.

 Table 1 Summary of fixed effects of explanatory model of soil CO2 molar fraction

odel fixed effect	Compared factor level	β	SE	arphi	
tercept		1731.3	1.65	1731.3	
ICROHABITAT	Bare soil	0.19	3.26	1731.49	
	Genista sp.	0.73	3.26	1732.03	
	Hormatophylla sp.	-1.37	2.3	1729.93	
EASON	Growing	-0.09	0.36	1731.21	
	Dry	0.34	0.6	1731.64	
2		2.02	0.22	2.02	
		8.67	0.45	8.67	
• SEASON	Growing	-5.38	0.56	3.29	
	Dry	-11.08	1.18	-2.41	
• MICROHABITAT	Bare soil	1.48	0.32	10.15	
	<i>Genista</i> sp.	0.39	0.3	9.06	
	<i>Hormatophylla</i> sp.	-0.14	0.21	8.53	
		-1.25	0.06	-1.25	
		4.05	0.3	4.05	
• SEASON	Growing	1.36	0.35	5.41	
	Dry	2.75	0.37	6.8	
• MICROHABITAT	Bare soil	2.85	0.32	6.9	
	<i>Genista</i> sp.	-0.15	0.28	3.9	
	Hormatophylla sp.	-0.86	0.19	3.19	
• 0		-0.78	0.27	-0.78	
• θ • SEASON	Growing	6.36	0.44	5.58	
	Dry	0.92	0.65	0.14	
		-0.57	0.05	-0.57	
• MICROHABITAT	Bare soil	-0.29	0.1	-0.86	
	Genista sp.	-0.04	0.1	-0.61	
	Hormatophylla sp.	0.4	0.07	-0.17	
PD		-0.42	0.07	-0.42	

 \Box Pronounced correlation between χ_s and T_s on hourly to daily periodicities and temporarily on larger periodicities, generally after rain. \Box Dominant correlation between χ_s and u_* on the

scale of synoptic cycles.

	y /days Periodicity /days	0.2 - 1 - 4 - 16 - 64 - 0.2 - 1 -		
	s Periodicit	4 - 16 - 64 -		
	Periodicity /day	0.2 - 1 - 4 - 16 - 64 -		
		0		
Figure water				

Lopez, C. J. R., Sánchez-cañete, E. P., Serrano-Ortiz, P., López-Ballesteros, A., Domingo, F., Kowalski, A. S., & Oyonarte, C. From microhabitat to ecosystem: identifying the biophysical controlling factors of soil CO₂ dynamics in a karst shrubland. Accepted for publication in European journal of soil science.

Figure 2 Values of fitted model (a) plotted against observations, (b and c) over time. Shaded areas delimit clearly identified ventilation events.

Refitting the same model after removing terms involving SEASON showed that on an annual scale, soil water content (ϑ) had a predominant effect on $\chi_s(\varphi =$ 6.28) compared to T_s (φ = 4.22) and that their interaction was substantial ($\varphi = 1.99$).

Time-frequency patterns of soil CO₂

 \Box Strong influence of seasonal rainfalls on χ_s .

3 Wavelet coherence analysis spectra between soil CO₂ molar fraction (χ_s) and its main drivers for bare soil and a plant of *Festuca* sp. (a and b) Soil content (ϑ). (c and d) Soil temperature (T_s). (e and f) Friction velocity (u_*). The correlation intensity varies from blue (low) to red (high).

REFERENCE

In one year:

- effect).

These data were funded by the Spanish Ministry of Economy and Competitiveness projects SOILPROF [CGL2011-15276-E] and GEISpain [CGL2014-52838-C2-1-R] and the European Commission project DIESEL (PEOPLE-2013-IOF-625988). We acknowledge the DINCOS project (Biocrust Dynamics, key CGL2016-78075-P) funded by the Spanish State Plan for Scientific and Technical Research and Innovation 2013-2016, which funds the first author. \bigcirc

Upscaling of F_s from microhabitat to ecosystem

 \Box Ecosystem- F_s was estimated to be equal to 175 \pm 13 g C m⁻² whereas ecosystem respiration (R_{eco}) was estimated to be equal to 155 ± 8 g C m⁻².

□ Fluxes diverged during progressive soil drying.

CONCLUSIONS

 \Box Soil water content (ϑ) was the main driver of χ_s . Soil temperature (T_s) became the first limiting factor of χ_{s} only during the inter-season, but the effect of ϑ was still substantial.

 \Box The strong interaction between T_s and ϑ confirmed that models based on temperature alone are inappropriate in water-limited ecosystems. In particular, dry and hot intervals greatly enhanced the pulsed response of χ_s to precipitation (Birch

Friction velocity was also identified as a significant predictor of χ_s dynamics.

The microhabitat and season modulated the response of χ_s to the main identified drivers.

ACKNOWLEDGEMENTS