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Why we care about it

The interest in subsurface energy resources has significantly
increased as a means to mitigate climate change…

energie.deangeli.ch Basel (Switzerland) 2006, M3.4

Sankt Gallen (Switzerland) 
2013, M3.3

Oklahoma (US) 2011, M5.6 
2016, M5.8

…inducing numerous cases of felt seismicity

Castor (Spain) 2013, M4.2



A fracture is stable 
while tangential 
forces (τ) are lower 
than the friction 
coefficient (μ) 
multiplied by the 
fracture normal 
effective stress (σ‘n) 

σ‘n

τ

τ

σ‘n

τ<μσ‘n
μ=tgφ’

σ‘n= σn-P

σn

σn

P

P

σ‘n

τ

3

What induces seismicity

Geo-energies imply fluid injection in the subsurface
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Fluid injection 
produces a pore 
pressure increase (ΔP) 
inducing fluid flow 
through the fracture.

This overpressure (ΔP) 
opposes to the normal 
stress that tends to 
close the fracture, 
reducing the effective 
stress
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What induces seismicity
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If the overpressure 
(ΔP) is high enough 
(τ=μσ’n), shear slip 
occurs between the 
planes of the fracture

σ‘n

τ

ΔP

5

What induces seismicity



Sliding will open the
fracture and trigger a 
microseismic event.

Fracture opening in 
the aquifer can 
enhance injectivity, 
but it may open up 
migration paths in the
caprock.
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What induces seismicity

In theory, the triggering mechanism is simple, 
so we should be able to control it. But… 

Vilarrasa et al. (2011) TIPM



Henninges et al. (2011)

Geologic carbon storage (GCS)
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Pressure evolution

Vilarrasa et al. (2010) IJGGC
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While the crystalline basement is critically stressed,
sedimentary rocks are generally not, so there is margin to
increase fluid pressure safely

Stress state

Vilarrasa and Carrera (2015) PNAS
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Thermal effects

Vilarrasa and Rutqvist (2017) Earth Sci Rev

The whole CCS chain needs to be taken into account. The
optimal conditions for CO2 transport are in liquid state.
Why don’t we take advantage of this?
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Liquid CO2 5.9·106 kWh
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Vilarrasa et al. (2013) IJGGC



Inelastic strain is restricted to the cold region inside 
the reservoir and does not propagate into the caprock

Cooling front advances much behind of CO2 plume front

Fractures open up in reservoir: increased permeability!

Fractures do not propagate into the caprock!

Caprock integrity is maintained…

550 m

70 m

20 m

2 years of injection
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Contraction induces a thermal stress reduction 
in all directions, including the vertical

…due to stress redistribution

2 years of injection
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This causes a stress redistribution to satisfy stress equilibrium and 
displacement compatibility that tightens the lower portion of the 
caprock (caprock integrity is maintained)
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But if faults are present…

Δp (MPa)

Vilarrasa et al. (2016) JRMGE

…the additional overpressure may 
compromise fault and caprock stability
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Stress changes around the fault

Δσx (MPa)Horizontal stress increases less where the 
reservoir is in contact with the softer shale

Shale deforms rather 
than accumulate stress

Δσy (MPa)Despite the overburden remains constant, the vertical stress 
changes to satisfy stress balance 
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Low-k faults may be reactivated 

Δmob (⁰)

The fault would be reactivated in the lower half of the 
reservoir if no pressure management is performed 
(only for low-permeable faults k<10-17 m2) 

Since horizontal stress 
does not increase in 
the lower half of the 
reservoir, the 
deviatoric stress is 
maintained, becoming 
the most critical zone 

Δmob (⁰)

k=10-17 m2

k=10-19 m2



Vilarrasa et al. (2017) IJGGC 16

Low-permeable faults can be identified 
and located by analyzing fluid pressure 
evolution using diagnostic plots

What can we do?
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𝑥𝑟𝐷 = 𝐴 𝑡𝑑𝑖𝑣𝐷  
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Take-home message
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THANK YOU FOR YOUR ATTENTION

QUESTIONS?


