

Induced Seismicity in Geo-energies

Víctor Vilarrasa

(victor.vilarrasa@idaea.csic.es)

Jesus Carrera, Sebastià Olivella, Jonny Rutqvist and Lyesse Laloui

EGU2018, Outstanding ECS Award ERE Lecture, Vienna, April 12th, 2018

Why we care about it

Oklahoma (US) 2011, M5.6

2016, M5.8

The interest in **subsurface energy** resources has significantly increased as a means to mitigate climate change...

Castor (Spain) 2013, M4.2 ING TO THE CANCELLATION OF PRI energie.deangeli.c Basel (Switzerland) 2006, M3.4 Moeck et al. (2015) Sankt Gallen (Switzerland) WELCOME 2013, M3.3 OKLAHOMA QUAKENADO

... inducing numerous cases of felt seismicity

Geo-energies imply fluid injection in the subsurface

A fracture is stable while tangential forces (τ) are lower than the friction coefficient (μ) multiplied by the fracture normal effective stress (σ'_{n})

Fluid injection produces a pore pressure increase (ΔP) inducing fluid flow through the fracture.

This overpressure (ΔP) opposes to the normal stress that tends to close the fracture, reducing the effective stress

If the overpressure (ΔP) is high enough $(\tau = \mu \sigma'_n)$, shear slip occurs between the planes of the fracture

Sliding will open the fracture and trigger a microseismic event.

Fracture opening in the aquifer can enhance injectivity, but it may open up migration paths in the caprock.

Vilarrasa et al. (2011) TIPM

In theory, the triggering mechanism is simple, so we should be able to control it. But...

Pressure evolution

Geologic carbon storage (GCS)

Stress state

While the crystalline basement is critically stressed, sedimentary rocks are generally not, so there is margin to increase fluid pressure safely

The whole CCS chain needs to be taken into account. The optimal conditions for CO_2 transport are in liquid state. Why don't we take advantage of this?

Liquid CO₂ injection

Caprock integrity is maintained...

BY

Liq Sat Deg (-)

0.89

-0.000203

Inelastic strain is restricted to the cold region inside the reservoir and does not propagate into the caprock

...due to stress redistribution

This causes a stress redistribution to satisfy stress equilibrium and displacement compatibility that tightens the lower portion of the caprock (caprock integrity is maintained)¹⁵

But if faults are present...

Stress changes around the fault

Low-k faults may be reactivated

Since horizontal stress
does not increase in
the lower half of the
reservoir, the
deviatoric stress is
maintained, becoming
the most critical zone

The fault would be reactivated in the lower half of the reservoir if no pressure management is performed (only for low-permeable faults $k < 10^{-1}$ m²)

k=10⁻¹⁷ m²

 $\Delta \phi_{mob}$ (°)

-31.7 -27.53 -23.36 -19.19

-15.02 -10.85 -6.68 -2.51 --1.66 --5.83

-10

What can we do?

Take-home message

Large earthquakes (M>4) might nucleate at depths greater than 5 km, within the critically stressed crystalline basement BASEMENT

References

•Vilarrasa, V., Bolster, D., Olivella, S., & Carrera, J. (2010). Coupled hydromechanical modeling of CO_2 sequestration in deep saline aquifers. *International Journal of Greenhouse Gas Control*, 4(6), 910-919.

•Vilarrasa, V., Koyama, T., Neretnieks, I., & Jing, L. (2011). Shear-induced flow channels in a single rock fracture and their effect on solute transport. *Transport in porous media*, *87*(2), 503-523.

•Vilarrasa, V., Silva, O., Carrera, J., & Olivella, S. (2013). Liquid CO₂ injection for geological storage in deep saline aquifers. *International Journal of Greenhouse Gas Control*, 14, 84-96.

•Vilarrasa, V., Olivella, S., Carrera, J., & Rutqvist, J. (2014). Long term impacts of cold CO₂ injection on the caprock integrity. *International Journal of Greenhouse Gas Control*, 24, 1-13.

•Vilarrasa, V., & Carrera, J. (2015). Geologic carbon storage is unlikely to trigger large earthquakes and reactivate faults through which CO₂ could leak. *Proceedings of the National Academy of Sciences*, *112*(19), 5938-5943.

References

•Vilarrasa, V., & Laloui, L. (2015). Potential fracture propagation into the caprock induced by cold CO_2 injection in normal faulting stress regimes. *Geomechanics for Energy and the Environment*, *2*, 22-31.

•Vilarrasa, V. (2016). The role of the stress regime on microseismicity induced by overpressure and cooling in geologic carbon storage. *Geofluids*, *16*(5), 941-953.

•Vilarrasa, V., Makhnenko, R., & Gheibi, S. (2016). Geomechanical analysis of the influence of CO_2 injection location on fault stability. *Journal of Rock Mechanics and Geotechnical Engineering*, 8(6), 805-818.

•Vilarrasa, V., & Rutqvist, J. (2017). Thermal effects on geologic carbon storage. *Earth-science reviews*, *165*, 245-256.

•Vilarrasa, V., Bustarret, G., Laloui, L., & Zeidouni, M. (2017). A methodology to detect and locate low-permeability faults to reduce the risk of inducing seismicity of fluid injection operations in deep saline formations. *International Journal of Greenhouse Gas Control, 59*, 110-122.

QUESTIONS?

THANK YOU FOR YOUR ATTENTION

