Anomalous Diffusions of Suspended Sediment Transport by Two-particle Stochastic Diffusion Particle Tracking Model

Christina W. Tsai¹, Serena Y. Hung² and Tsung-Han Wu³

¹ Professor, Department of Civil Engineering, National Taiwan University (cwtsai@ntu.edu.tw)
² Ph. D. Student, Department of Civil Engineering, National Taiwan University (d05521007@ntu.edu.tw)
³ Research Assistant, Department of Civil Engineering, National Taiwan University (t03521318@ntu.edu.tw)

Objectives

1. To model the random behaviors of suspended sediment particles in turbulent flow.
2. To propose a state-of-the-art two-particle stochastic diffusion particle tracking model (two-particle SD-PTM) which can
 - Simulate suspended sediment transport in the turbulence flows
 - Take particle correlation into consideration
 - Describe the anomalous diffusions of sediment motions

Methodology

In the two-particle SD-PTM, particles can be separated by the molecular diffusion when they are in the immediate neighborhood.

\[dX_i(t) = \left[(\overline{u} + \xi) \frac{\Delta x}{\Delta t} \right] dt + \sqrt{2D_0(1 - \beta^2)} dB_i + \beta dB_i' \]

Governing equation of two-particle SD-PTM

- \(r_i \) : representation of particles, \(i = 1, 2 \)
- \(\xi_i \) : position of particle \((x(t), y(t), z(t))\)
- \(\overline{u} \) : mean flow velocity in different direction
- \(D_0 \) : turbulence diffusion coefficient
- \(\beta \) : the diffusion effect which can be chosen between 0 to 1

Deterministic term

- \(db_i \) : the small scale turbulence and molecular diffusion
- \(db_i' \) : the large scale turbulence which has spatial correlation

Re-suspension Mechanism

- Threshold of suspended load
- The expansion of probability density function of \(w_i \):

Turbulent Diffusion

- \(\xi \) : turbulence diffusion coefficient
- \(\rho_i \) : bulk density
- \(\xi_i \) : particle density
- \(\xi' \) : eddy viscosity which is determined by SST turbulence model

Spatial Correlation

- By taking the spatial correlation of particles into consideration, the proposed model can account for the influence of turbulence of various scales on sediment movement.
- Dependent Brownian motion (\(\xi_i \)) can be used to simulate spatial correlation of particles constrained by large eddies.

Conclusions

A state-of-the-art two-particle stochastic diffusion particle tracking model (two-particle SD-PTM) is proposed to

- To simulate the suspended particle transport in turbulent flows
- To take particle correlation into consideration
- To incorporate a more sophisticated turbulent diffusivity formula and a recently developed re-suspension mechanism
- To verify the proposed model by comparing the quantified sediment concentrations against experimental data
- To verify the Markovian property after a sufficiently long time
- To describe the transition of anomalous diffusions of suspended sediment transport

Model Hypotheses and Validations

Model Hypothesis — Markovian Property

It is hypothesized that movement of sediment particles satisfies the Markovian property.

Model Hypothesis — Fickian Law

It is hypothesized that suspended sediment particle movement follows the Fickian law.

Hypothesis Failed

The change of the trend in the ensemble variances can be attributed to particle deposition and resuspension.