

*H*ydraulics and *H*ydrology

Objectives

- 1. To model the random behaviors of suspended sediment particles in turbulent flow
- 2. To propose a state-of-the-art two-particle stochastic diffusion particle tracking model (two-particle SD-PTM) which can
- Simulate suspended sediment transport in the turbulence flows
- Take particle correlation into consideration
- Describe the **anomalous diffusions** of sediment motions

Methodology

In the two-particle SD-PTM, particles can be separated by the molecular diffusion when they are in the immediate neighborhood.

Governing equation of two-particle SD-PTM

$$dX_t^j(t) = \left(\overline{U} + \frac{\partial \epsilon_s}{\partial x_t^j}\right) dt$$

αειεγπιπιςτις τεγπ

- j : representation of particles, j = 1,2
- X_t : position of a particle [X(t), Y(t), Z(t)]
- \overline{U} : main flow velocity in different direction
- ε_s : turbulence diffusion coefficient

Re-suspension Mechanism

Threshold of suspended load

The expansion of probability density function of w': $P_{w'}(w' \ge 0) = \frac{1}{16}(17 + \hat{w} - \hat{w}^2) \exp(-\hat{w})$ $P_{w'}(w' < 0) = 0$, $\widehat{w} = w'/\sigma_2 \approx w'/u_*$

(Bose and Dey, 2013)

Conclusions

A state-of-the-art two-particle stochastic diffusion particle tracking model (two-particle SD-PTM) is proposed to

To simulate the **suspended particle transport** in turbulent flows

Anomalous Diffusions of Suspended Sediment Transport by Two-particle Stochastic Diffusion Particle Tracking Model Christina W. Tsai¹, Serena Y. Hung² and Tsung-Han Wu³

¹ Professor, Department of Civil Engineering, National Taiwan University (cwstsai@ntu.edu.tw) ² Ph. D. Student, Department of Civil Engineering, National Taiwan University (d05521007@ntu.edu.tw) ³Research Assistant, Department of Civil Engineering, National Taiwan University (r03521318@ntu.edu.tw)

$$\sigma_x^2 = \langle (x_i - \langle x \rangle)^2 \rangle \propto (t)^{2\gamma}$$

Experimental conditions	C02 (Colman, 1986)
Flow depth (m)	0.171
Reynolds number	179775
Shear velocity (m/s)	0.041
Karman coefficient	0.433
Particle specific gravity	2.65
Particle diameter (mm)	0.15
The diffusion effect, eta	$\sqrt{0.9}$
Time step (s) $w_s \Delta t/h < 0.01$ (Argall et al., 2004)	0.05
Realizations	500