Using Forbush decreases to derive the transit time of ICMEs propagating from 1 AU to Mars

Johan von Forstner¹, Jingnan Guo¹, Robert F. Wimmer-Schweingruber¹, Donald M. Hassler², Manuela Temmer³, Mateja Dumbović³, Lan K. Jian⁴,⁵, Jan K. Appel¹, Jaša Čalogović⁶, Bent Ehresmann², Bernd Heber¹, Henning Lohf¹, Arik Posner⁷, Bojan Vršnak⁶, Cary J. Zeitlin⁸

EGU General Assembly 2018 — ST1.5/PS4.6

¹University of Kiel, ²Southwest Research Institute, Boulder, ³University of Graz, ⁴University of Maryland, College Park,
⁵NASA Goddard Space Flight Center, Greenbelt, ⁶Hvar Observatory, University of Zagreb, ⁷NASA Headquarters, Washington DC
How is space weather like at Mars?
Mars Science Laboratory’s Radiation Assessment Detector (MSL/RAD)

- Built at Kiel University and SwRI
- Radiation detector onboard the *Curiosity* rover on the surface of Mars
- Operating since landing in August 2012
- Measures galactic cosmic rays (GCR) as well as solar energetic particle (SEP) events
 → can be used to detect space weather phenomena through Forbush decreases!
Mars Science Laboratory’s Radiation Assessment Detector (MSL/RAD)

• Built at Kiel University and SwRI
• Radiation detector onboard the Curiosity rover on the surface of Mars
• Operating since landing in August 2012
• Measures galactic cosmic rays (GCR) as well as solar energetic particle (SEP) events

→ can be used to detect space weather phenomena through Forbush decreases!

Richardson and Cane, 2011

Interplanetary coronal mass ejections (ICMEs) passing a planet or spacecraft cause a temporary reduction, the Forbush decrease, in the measured flux of galactic cosmic rays.

Similar decreases can also occur for stream interaction regions (SIRs).
Mars Science Laboratory’s Radiation Assessment Detector (MSL/RAD)

- Built at Kiel University and SwRI
- Radiation detector onboard the Curiosity rover on the surface of Mars
- Operating since landing in August 2012
- Measures galactic cosmic rays (GCR) as well as solar energetic particle (SEP) events

→ can be used to detect space weather phenomena through Forbush decreases!

FDs can also be detected at Earth (e.g. neutron monitors) and the STEREO spacecraft (HET)
Observations during opposition phases

- Low longitudinal separation $\Delta \varphi$
 \rightarrow same ICMEs at both locations
 \rightarrow information about kinematics

- Applicable periods since MSL landing:
 - STEREO B 2012
 - STEREO A 2013
 - Earth 2014
 - STEREO B 2015 (not in contact)
 - STEREO A 2015 (turned off)
 - Earth 2016

Satellite icon: Esteban Sandoval, the Noun Project
Cross-correlation analysis

Goal: determine ICME travel time between 1 AU and Mars using Forbush decreases

- Calculate cross-correlation function (CCF)

\[(f \ast g)(\tau)\]

of GCR data at Earth/STEREO and Mars in a small (1 sol or less) window around the known ICME onset time at Earth

- Value of the **time lag** \(\tau \) where

\[(f \ast g)(\tau) = \max\]

\(\Rightarrow \) ICME’s travel time

- Fit a Gaussian distribution to \((f \ast g)\) to estimate the error
Event list

- In total, **43 ICMEs** observed at Earth/STEREO during the 4 opposition periods, according to *Richardson & Cane (2010)* and *Jian et al. (2013)* lists.
• In total, **43 ICMEs** observed at Earth/STEREO during the 4 opposition periods, according to *Richardson & Cane (2010)* and *Jian et al. (2013)* lists

• Due to
 - very weak FDs at one or both locations
 - FDs not visible at STEREO/HET due to coinciding SEP events
 - data gaps
 - ICMEs that missed one of the observation points
 - ICMEs in quick succession merging on their way

many events needed to be dropped from the study, resulting in **15 remaining ICMEs**
Statistical analysis

- On average, the ICMEs in our sample decelerate between 1AU and Mars.
 \[\langle \frac{V_{1AU-Mars}}{V_{1AU}} \rangle = 0.86 \pm 0.06 \]

\[\frac{v}{v_{1AU}} \]

\[\begin{array}{cccccc}
0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 & 1.6 \\
0 & 2 & 4 & 6 & & & \\
\end{array} \]

\[\frac{v_{SW} - v_{1AU}}{km \cdot s^{-1}} \]

\[\begin{array}{cccccc}
0 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 & 1.6 \\
0 & 2 & 4 & 6 & & & & \\
\end{array} \]

\[p = 18.0 \% \]
Statistical analysis

- On average, the ICMEs in our sample decelerate between 1AU and Mars.
 \[\langle \frac{v_{1AU-Mars}}{v_{1AU}} \rangle = 0.86 \pm 0.06 \]
- The deceleration is stronger when the ICME \(v_{1AU} = v_{max} \) is fast at 1AU compared to the ambient solar wind speed \(\overline{v_{SW}} \)
Comparison with simulation results

WSA-ENLIL+Cone (Odstrcil et al., 2004) simulation from Sun to Mars

Drag-Based model (Vršnak et al., 2013) simulation from 1AU onward

- $T_{ENLIL} = T_{correl}$ ($r = 0.60$)
- $T_{DBM} = T_{correl}$ ($r = 0.75$)

better agreement due to 1AU constraint
Observations during MSL flight phase

- RAD data available Dec 2011 - Jul 2012
- $\Delta \varphi$ between Earth and MSL gets larger over time \rightarrow most ICMEs seen at both locations in first few months

MSL cruise trajectory
(in reference frame co-rotating with Earth)

Rover icon: Ayub Irawan, the Noun Project
Observations during MSL flight phase

- RAD data available Dec 2011 - Jul 2012
- $\Delta \varphi$ between Earth and MSL gets larger over time \rightarrow most ICMEs seen at both locations in first few months
- 5 additional events examined, results follow a similar trend
Future plans: STEREO-HI observations

Plan for future work:

- STEREO Heliospheric Imagers capable of remote tracking of ICMEs up to $\gtrsim 1$ AU
- Comparison with MSL/RAD Forbush decreases allows for coverage of more events going towards Mars (e.g. from HELCATS catalogues)

→ see my poster today at X4.209
Conclusions

- ICME travel time between 1 AU (STEREO or Earth) and Mars close to their oppositions can be determined using cross-correlation method
- Statistical study of 15 events: Average ICME decelerates slightly even beyond 1 AU
- Amount of deceleration tends to be correlated with the ambient solar wind speed
- Predictions for Mars arrival times can be improved by taking into account 1 AU data
- Future studies will also include ICMEs observed remotely with STEREO-HI telescopes
 → see my poster today at X4.209

Paper published: von Forstner et al. (2018), *JGR — Space Physics*

More info:

http://www.ieap.uni-kiel.de/et/people/forstner
Conclusions

- ICME travel time between 1 AU (STEREO or Earth) and Mars close to their oppositions can be determined using cross-correlation method
- Statistical study of 15 events: Average ICME decelerates slightly even beyond 1 AU
- Amount of deceleration tends to be correlated with the ambient solar wind speed
- Predictions for Mars arrival times can be improved by taking into account 1 AU data
- Future studies will also include ICMEs observed remotely with STEREO-HI telescopes
 → see my poster today at X4.209

Paper published: von Forstner et al. (2018), JGR — Space Physics

Thank you!

More info:
http://www.ieap.uni-kiel.de/et/people/forstner