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in a statistical downscaling framework
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« Climate projections of individual models differ considerably, particularly at the regional scale and with respect to certain climate

variables such as precipitation.
* However, climate protection and adaptive measures require reliable estimates of future climate change.

* The aim of this study is to derive more reliable estimates of future precipitation changes in the Mediterranean region for the
multi-model ensemble from CMIP3 and CMIP5.

* Why the Mediterranean area? It represents a so-called hot spot of climate change.

* The novelty of this weighting metric consists in avoiding the use of the precipitation bias by itself as a weighting basis, as

the modelling of precipitation amounts and their spatial distribution is still a highly insufficient subject.

2. Data and methods

* Time periods: 1950-1999 and 2070-2099; monthly data, pooled to
seasons DJF, MAM, JJA, SON.

* EOBS (version 12) for precipitation, NCEP-NCAR reanalysis for
atmospheric variables.

« All available CMIP3 and CMIP5 models for the 20c3m /
historical simulations and A1B & A2/ rcp4.5 & rcp8.5 scenarios.

* Predictors: geopotential heights (zg, 700&500 hPa), sea level
pressure (psl), atmospheric layer thickness between 925 and 500
hPa (thick500-925), zonal and meridional wind velocities (ua&va,
700 hPa), specific&relative humidity (hus&hur, 850&700 hPa).

* Predictand: monthly precipitation sums.
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Figure 1: Area of investigation with sub-regions of homogeneous precipitation
vanability. Greece-Turkey (1), North-westem area (2), Tyrrhenlan Sea
riparlans (3), Eastem Mediterranean (4), Ibenan Peninsula (5), Balkans (6).
Maghreb (7) and Eastermn Black Sea (8).

3. Downscaling approach & generation of weights

* DOWNSCALING: To determine the most important atmospheric predictor variables from the reanalysis data for the eight
precipitation sub-regions (= predictands, i.e., the seasonal and spatially averaged precipitation time series from EOBS), multiple
linear regressions (MLRs) are computed.

* To reduce the predictor variables to a set of manageable and physically meaningful predictors, seasonal (single-monthly) s-mode
PCAs are computed for each variable (1950-1999, based on correlation matrix, Varimax rotated).

* To overcome possible instationarities in the predictor-predictand-relationship, a bootstrapping method is applied.

* A stepwise method of predictor reduction is developed to find the optimal set of independent predictors, called key

P redictors. Table 1: Percentage frequencies of predictor vanables from the final MLR setups for the four seasons.

% 50 w0 L) Thick500-925 va7e ua 0 hurT00 hur8so busT0 hus8Se
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Al 46.6 73 21 ] 95 40 122 34 88 43

* WEIGHTS: Equivalent to the EOBS data and the NCEP-NCAR reanalysis, the CMIP model data is re-gridded to a 2 x 2 grid.

* The fields of the historical modelled atmospheric variables are normalized by the corresponding mean and standard
deviation of the NCEP-NCAR reanalysis (grid box by grid box) and then projected onto the loading patterns of the PCAs from
NCEP-NCAR.

* Thus, the bias of the modelled atmospheric variables in comparison to the reanalysis data is represented in the resulting
projected PC scores of the climate models. These biases are used to determine the weights for each investigated CMIP
model.

* Therefore, the appropriate key predictor PC scores are used to drive the MLRs. The absolute differences between the means
of the original fitted values of NCEP-NCAR and the resulting CMIP precipitation time series are used as basis for the model
weights.

* This is done separately for CMIP3 and CMIP5. The basic weights are then normalized between 0 and 1. As a result, each model
has one weight per sub-region and season.
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* Despite the variability within the ranking of one model in time and space,
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4. Results: Ranking of CMIP3 and CMIP5

* The presented weighting metric results in eight (sub-regions) by four (seasons) different assessments of model performance for

the entire Mediterranean area with respect to their skill in representing Mediterranean precipitation.
sSeasons CMIPS

sub-regions
sub-groups of better and worse models for the representation of
Mediterranean precipitation are clearly recognizable, indicated by the
range of the overall averaged ranks at the first columns.
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resulting from the weighting
meftric. Single ranking
results are aggregated over
all sub-regions and over al
seasons, respectively.
Bright background colour
indicates better ranking
results than a dark
background. The numbers
denote the overall ranking
resulf.
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5. Results: Weighted future precipitation changes

* The fields of the modelled atmospheric variables are normalized over the investigated time period 1950-1999/2070-2099
(separately for each scenario) and then projected onto the loading patterns of the PCAs from NCEP-NCAR. The key predictors
are used to drive the MLRs — no direct use of CMIP precipitation necessary!

* The resulting downscaled precipitation data from CMIP3 and CMIP5 models for the historical and the four future scenario runs
are used to calculate the precipitation change signals in the eight Mediterranean sub-regions and additionally weighted
according to the ranking results.
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Figure 3: Downscaled and weighted precipitation changes in % from 19501989 to 2070-2059 for the scenarios A18, A2, rcp4.5 and rcp8.5 in DJF, MAM, JJA and SON.

=> The application of the model weights leads mostly to either a shift or a concretion of the change signals and thus to more
reliable results. At a few sub-regions and seasons, the weighting resulted in a broadening of the change signal distribution.




