Assessing the potential of photoelectrochemical carbon removal as negative emission technology

Matthias M. May¹,*, Kira Rehfeld²

Matthias.May@helmholtz-berlin.de

1: Helmholtz-Zentrum Berlin, Institute for Solar Fuels. 2: Universität Heidelberg, Institute of Environmental Physics

EGU General Assembly 2019
10.04.2019
Anthropogenic emission rates are reduced too slowly

→ Almost all climate models assume negative emissions, where energy is invested to sequester atmospheric CO$_2$, starting from 2030

Type of technology and costs still very speculative

Most considered technologies are based on natural photosynthesis. Sequestration of CO₂ itself mainly relies on (safe) mineral trapping [2].

Natural Photosynthesis

- Scalable!
- Long-term storage feasible
 - *Energetic* efficiency ca. 2-3% [1]
 - Large areas [2,3]:
 - 10 Mio. km2 for dedicated crops

Natural Photosynthesis

- Scalable!
- Long-term storage feasible
- *Energetic* efficiency ca. 2-3% [1]

→ Large areas [2,3]:
- 10 Mio. km2 for dedicated crops

Natural Photosynthesis

- Scalable!
- Long-term storage feasible
- *Energetic* efficiency ca. 2-3% [1]

→ **Large areas** [2,3]:
 - 10 Mio. km² for dedicated crops

Scalable!
Long-term storage feasible
Energetic efficiency ca. 2-3% [1]
→ Large areas [2,3]:
10 Mio. km² for dedicated crops

Natural Photosynthesis

- Scalable!
- Long-term storage feasible

Energetic efficiency ca. 2-3% \cite{1}

→ Large areas

10 Mio. km\(^2\) for dedicated crops

Efficiency as the bottleneck!

\[\text{Area (10}^6 \text{ km}^2\) for -10 Gt per yr.\]

\[\text{Crop BECCS, CDR, Forest BECCS/AR}\]

Artificial Photosynthesis

- (Photo)electrochemical CO$_2$ reduction
- PV-coupled to dark electrolysis or
 - Integrated systems
 - Challenges of PV & electrocatalysis
 - For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
 - Negative-emissions-hydrogen [2]

Artificial Photosynthesis

- (Photo)electrochemical CO₂ reduction
- PV-coupled to dark electrolysis or
- Integrated systems

→ Challenges of PV & electrocatalysis
 - For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
 - Negative-emissions-hydrogen [2]

Artificial Photosynthesis

- (Photo)electrochemical CO₂ reduction
- PV-coupled to dark electrolysis or
- Integrated systems

→ Challenges of PV & electrocatalysis
 - For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
 - Negative-emissions-hydrogen [2]

Artificial Photosynthesis

- (Photo)electrochemical CO₂ reduction
- PV-coupled to dark electrolysis or
- Integrated systems

→ Challenges of PV & electrocatalysis
- For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
- Negative-emissions-hydrogen [2]

(Photo)electrochemical CO₂ reduction
- PV-coupled to dark electrolysis or
- Integrated systems
→ Challenges of PV & electrocatalysis
- For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
- Negative-emissions-hydrogen [2]

Artificial Photosynthesis

- (Photo)electrochemical CO₂ reduction
- PV-coupled to dark electrolysis or
- Integrated systems

→ Challenges of PV & electrocatalysis
- For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
- Negative-emissions-hydrogen [2]

Multi-junction absorbers required to produce $>1.6\,\text{V}$ photovoltage

Suitable bandgap combinations, efficient catalysis

Model using detailed balance, $\eta(j)$ from catalysis \[2\]

High efficiency

- Multi-junction absorbers required to produce > 1.6 V photovoltage
- Suitable bandgap combinations, efficient catalysis
- Model using detailed balance, $\eta(j)$ from catalysis [2]

Solar-to-Fuel efficiencies:
STF $\sim \frac{j \Delta G}{P}$

\rightarrow Not suitable for neg. emissions

Solar-to-carbon (STC) [2]:

$STC = \frac{\eta_F \eta_e j_e}{j_{ph}}$

Solar-to-Fuel efficiencies:

\[\text{STF} \sim \frac{j \Delta G}{P} \]

→ Not suitable for neg. emissions

Solar-to-carbon (STC) [2]:

\[\text{STC} = \frac{\eta_F \eta_e j_e}{j_{ph}} \]

Solar-to-Fuel efficiencies:

$$\text{STF} \sim \frac{j \Delta G}{P}$$

→ Not suitable for neg. emissions

Solar-to-carbon (STC) [2]:

$$\text{STC} = \frac{\eta_F \eta_e j_e}{j_{ph}}$$

Solar-to-Fuel efficiencies:

\[\text{STF} \sim \frac{j\Delta G}{P} \]

→ Not suitable for neg. emissions

Solar-to-carbon (STC) [2]:

\[\text{STC} = \frac{\eta_F \eta_e j_e}{j_{ph}} \]

Limits about 10-20× of (achieved) nat. photosynthesis

Desert areas interesting due to high irradiance

Water consumption (formate): ca. 5 km^3 as opposed to $>2000 \text{ km}^3$ for biomass [2]

Desert areas interesting due to high irradiance

Water consumption (formate): ca. 5 km3 as opposed to >2000 km3 for biomass [2]

Liquid sink products in depleted fossil fuel reservoirs

Chemical post-processing, e.g. oxalate to organic minerals [1]

Electrochemical production of solid carbon demonstrated [2]

Organic construction materials?

Liquid sink products in depleted fossil fuel reservoirs

Chemical post-processing, e.g. oxalate to organic minerals [1]

Electrochemical production of solid carbon demonstrated [2]

Organic construction materials?

- Liquid sink products in depleted fossil fuel reservoirs
- Chemical post-processing, e.g. oxalate to organic minerals [1]
- Electrochemical production of solid carbon demonstrated [2]
- Organic construction materials?

Challenges

- Catalysts will differ from solar fuel applications
- Scalable absorbers
- Unify efficiency and stability
Challenges

- Catalysts will differ from solar fuel applications
- Scalable absorbers
 - Unify efficiency and stability
Challenges

- Catalysts will differ from solar fuel applications
- Scalable absorbers
- Unify efficiency and stability
Natural photosynthesis established NET, but requires large areas

Artificial photosynthesis reduces land and water footprint, but will probably be expensive

→ **Solar-To-Carbon** efficiency as benchmark for evaluation

Wide range of liquid or solid products feasible ↔ storage
Summary & Outlook

Natural photosynthesis established NET, but requires large areas

Artificial photosynthesis reduces land and water footprint, but will probably be expensive

→ **Solar-To-Carbon** efficiency as benchmark for evaluation

Wide range of liquid or solid products feasible ↔ storage
Natural photosynthesis established NET, but requires large areas

Artificial photosynthesis reduces land and water footprint, but will probably be expensive

→ Solar-To-Carbon efficiency as benchmark for evaluation

Wide range of liquid or solid products feasible ↔ storage
Natural photosynthesis established NET, but requires large areas

Artificial photosynthesis reduces land and water footprint, but will probably be expensive

→ Solar-To-Carbon efficiency as benchmark for evaluation

Wide range of liquid or solid products feasible ↔ storage

Thanks for your attention!

Financial support: