A simple theory and data based model of wheat yield

Shengchao Qiao1 (e-mail: qsc17@mails.tsinghua.edu.cn), Han Wang1, I. Colin Prentice2,3, Sandy P. Harrison1,4
1Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, China; 2AXA Chair of Biosphere and Climate Impacts, Department of Life Sciences, Imperial College London, UK; 3Department of Biological Sciences, Macquarie University, Australia; 4School of Archaeology, Geography and Environmental Sciences (SAGES), University of Reading, UK.

Summary
Climate exerts a major influence on crop development and yield. However, despite extensive modelling efforts, there is still considerable uncertainty about the impacts of climate change for wheat yield. In this study, we extend a first-principles based primary production model (P model, Wang et al., 2017 Nature Plants) to predict wheat yield at agricultural research sites of China. This simple theory and data based model (named PC model, Production of Crop) we present, accounts for the influence of climate, CO2 and management practices on wheat growth and yield using empirical relationships that link time-integrated gross primary production (GPP) to above-ground biomass (AB), and AB to grain yield. We show that the PC model can predict wheat growth and yield at agricultural sites in China. We then use the PC model to project the response of wheat yield to environmental change. It also can catch similar interannual change of wheat yield as LPJml model.

Theory

\[
GPP = \Phi_0 \times I_{\text{an}} \times \left( 1 - \frac{c_a}{c_a^*} \right) - \frac{c_a}{c_a^*} \left( 1 - \frac{2c_a}{c_a^*} \right) [1 m - 1]^{3/4} \]

\[\Phi_0: \text{intrinsic quantum yield (g C mol}^{-1})\]

\[I_{\text{an}}: \text{the PPFD absorbed by the canopy (mol m}^{-2} \text{ s}^{-1})\]

\[c_a: \text{ambient CO}_2 \text{ partial pressure (Pa)}\]

\[I_{\text{c}}: \text{photosynthetic compensation point (Pa)}\]

\[\gamma: \text{the viscosity of water, relative to its value at 25} \degree \text{C}\]

\[D: \text{vapor pressure deficit (kPa)}\]

\[K: \text{the effective Michaelis-Menten coefficient of Rubisco (Pa)}\]

\[c^*: \text{the cost factor for electron transport (e}^{-} \text{ s}^{-1})\]

\[\beta: \text{the ratio of cost factors for carboxylation and transpiration (} \beta = 414\text{)}\]

\[N: \text{total application of nitrogen (kg m}^{-2})\]

Data

<table>
<thead>
<tr>
<th>Sites</th>
<th>Data span</th>
<th>PPFD</th>
<th>T</th>
<th>RH</th>
<th>CO2</th>
<th>LAI</th>
<th>AB</th>
<th>Y</th>
<th>Flux data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weishan</td>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YuCheng</td>
<td>2004-2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ChangShu</td>
<td>2004-2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FengQiu</td>
<td>2004-2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LuanCheng</td>
<td>2004-2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>YanTing</td>
<td>2004-2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HaiLan</td>
<td>2001-2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LaLi</td>
<td>2004-2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LinZe</td>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ShaPoton</td>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\Phi_0\) data used to test PC model;
\(\Phi_0\) data used to test P model;
\(\Phi_0\) data used to derive the ratio of AB to GPP;
\(\Phi_0\) data used to derive allocation relationship from AB to yield.

Conclusions
(1) The simple PC model can successfully capture the observed interannual variability of wheat yields at all agriculture sites.
(2) The simple PC model produces similar results as the complex LPJml model in the future scenarios.
(3) The PC model yields insights into how wheat yields respond to environmental variations. A constant harvest index can not be assumed; instead the relationship between yield and AB follows a saturation curve, with both nitrogen addition and crop variety influencing the relationship.