

1. Background

- Boron and its stable isotopes (δ^{11}B and δ^{10}B) a key tracer of slab components under volcanic arcs:
 - Low mantle conc (<0.1 ppm)
 - Strong fluid partitioning, with concomitant isotope fractionation

- Modified summary of slab components. Note the high B concentration in all slab components, and their highly variable δ^{13}N components where subduction has ceased.

- Only handful of studies used B to investigate impact of slab components under volcanic arcs:
 - Boron and its stable isotopes (11B and 10B) a key tracer of slab components
 - Strong fluid partitioning, with concomitant isotope fractionation

- Low mantle conc (<0.1 ppm)

2. New Results

- First B isotope data for young volcanic rocks from modern continent-continent collision.

3. Inherited slab signature: amphibole sponge

- Consistent isotope composition over time (Fig. 5) — long-lived reservoir, inherited from previous subduction.
- Stored in lithosphere — lower T — Stable metasomatic phases: amphibole.

4. Long live the sediment melt!?

- Light δ^{11}B, low B/Nb + 143Nd/144Nd (Figs 4, 5) — NOT serpentinite aqueous fluid.
- Lack of aqueous fluid not inherited from hot subduction zone (Fig. 10) — fluids transitory, sediment melts long-lived.

5. Conclusions

- Post-collisional B + δ^{11}B distinct from both MORB and arcs.
- B signature inherited from previous subduction and stored in an amphibole sponge in the lithosphere.
- Slab component dominated by sediment melts.

References:

Pliocene-Quaternary post-collisional volcanoes

- SUGDEN, P. J. [1], SAVOV, I. P. [1], AGOSTINI, S. [2], WILSON, M. [1], HALAMA, R. [3], MELIKSETIAN, K. [4].

[1] School of Earth and Environment, University of Leeds, UK
[2] Institute of Geosciences and Georesources, CNR, Pisa, Italy
[3] School of Geography, Geology and the Environment, Keele University, UK

* Contact: eepjs@leeds.ac.uk