HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

MOSES

A novel observing system for highly dynamic events

Ute Weber, Claudia Schütze & MOSES Team

In Short

MOSES – Modular Observation Solutions for Earth Systems

- new observing system / research infrastructure
- designed to investigate the interactions of short-term events and long-term trends across
 Earth compartments

Organisation und Implementation

- measures energy, water, nutrient and GHG states and fluxes
- Investment 30 Mio. € / Implementation Phase 2017 2021 ➤ Operation Phase 2022
- developed by 9 Helmholtz Centers in the research field "Earth and Environment"
- Coordination: Helmholtz Centre for Environmental Research (UFZ)
- Information: moses-helmholtz.de, campaign blog: https://blogs.helmholtz.de/moses/

- Scientific Question
- Observing System
- Observation & Evaluation
- Timeline & Organisation

Why Events?

- 1. Events have the potential for long-term environmental changes
- > To what extent?

Why Events?

- Hydrological events (flood, mass movement)
- Climatological events (extreme temperature, drought, forest fire)
- Meteorological events (storm)
- Geophysical events (earthquake, tsunami, volcanic eruption)

European Academies' Science Advisory Council, Extreme weather events in Europe, March 2018 (Munich Re NatCatSERVICE)

2. Events are likely to appear more frequently / intense in the future

What are their long-term impacts?

- Scientific Question
- Observing System
- Observation & Evaluation
- Timeline & Organisation

Mobile and Modular Observing System

Requirements

- mobile + modular
- system-oriented
- multi-parameter sensor systems

Technical Innovation

- new developments
- miniaturization
- automation

Module

MOSES Module	Consortium	Heat Waves	Hydrologic Extremes	Ocean Eddies	Thaw Events Permafrost
Autonomous Vehicles	GEOMAR, HZG		Х	X	Х
Fixed Point Observatories	AWI, GEOMAR, HZG		Х	Х	Х
Coastal and Marine Mobile Systems	AWI, GEOMAR, HZG		X	Х	Х
Permafrost Thaw and Subsidence	AWI, GFZ	X	X		Х
Flow and Sediment Dynamics	AWI, GFZ, UFZ	Х	Х		Х
Biota	AWI, HMGU, UFZ, KIT, FZJ	X	X		
Water Balance	GFZ, FZJ, UFZ	Х	Х		Х
Soil and Water Quality	HMGU, UFZ	Х	Х		
Land-Atmosphere Fluxes	KIT, FZJ, UFZ, GFZ	Х	Х		Х
Atmospheric Dynamics	FZJ , KIT	Х	Х	(X)	
Atmospheric Chemistry	FZJ, KIT	Х	Х		Х

DLR: airborne TANDEM-L-like System (operational ~2020)

mobile gravimeters groundwater

cosmic ray rover soil moisture

mobile flux-towers GHG + energy fluxes

isotope-stations isotope signatures of GHG + H₂0

mobile lidar aerosols, wind, turbulence,

boundary layer properties

mobile radar rain, wind, cloud properties

drones (planes) GHG, O3, VOC, NOX, aerosols,

thermal, multispectral

mini balloons H_20 , aerosols, O3, radiosonde,

GHG

Technical Innovation

Land-Atmosphere Fluxes

Mobile Isotope Stations CO₂ / H₂O

high resolution isotope measurements

- ➤ GHG-assessment
- > identification of sources

- Scientific Question
- Observing System
- Observation & Evaluation
- Timeline & Organisation

Observation & Evaluation: Events & Trends

heat waves & droughts hydrological extremes rapid permafrost thaw ocean eddies

event-driven observation campaigns along "event chains"

integration of event data into long-term / large-scale reference systems

national and international monitoring programmes / satellite data

Evaluation: Reference Systems

MOSES requires long-term / large scale reference systems

- Helmholtz Observatories
 TERENO, COSYNA, Kapverden, Lena Delta,
 → sites for MOSES test campaigns
- National and International Environmental Monitoring Programmes ICOS, LTER, WWRP, EuroGOOS, ...
- Satellite Missions
 MODIS, EnMAP, Sentinels, Grace-FO, ...

complements and extends

MOSES

Observation along Event Chains

Observation along Event Chains

Page 14

- Scientific Question
- Observing System
- Observation & Evaluation
- Timeline & Organisation

Implementation 2017 - 2021: Test Campaigns

>cooperation with national / (international) partners from research and practise

Event	Date	Test Campaign
Heat & Droughts	7/2018 5/2019	TERENO Eifel: atmosphere chemistry, soil moisture, land-atmosphere fluxes ScaleX, TERENO Ammer: atmosphere chemistry and dynamics, vegetation stress, land-atmosphere fluxes, soil moisture
Hydrological Extremes	4/2019 4-9/2019 2020	Erzgebirge, Müglitztal: heavy rain and flood generation Elbe estuary: water quality Elbe catchment and estuary: dominant processes during high and low flows
Permafrost	8/2018	Mackenzie Delta: GHG emissions, thermokarsts
Ocean Eddies	2019/20	Cape Verde: low oxygen eddies

... there are more test campaigns to come

Organisation

Project Coordination

Dr. Ute Weber, UFZ

Implementation Office

Dr. Claudia Schütze, UFZ

Data Management

Dr. Dorit Kerschke, GFZ

MOSES Team

MOSES Steering Committee

Prof. Philipp Fischer, AWI

Prof. Irena Hajnsek, DLR

Prof. Harry Vereecken, FZJ

Prof. Jens Greinert, GEOMAR

Prof. Bruno Merz, GFZ

Prof. Jörg Schnitzler, HMGU

Prof. Burkard Baschek, HZG

Prof. Hans-Peter Schmid, KIT

Prof. Peter Dietrich, UFZ

Coordination Event Workgroups

Heat Waves and Droughts

Prof. Astrid Kiendler-Scharr, Prof. Nicolas Brüggemann, FZJ

Hydrological Extremes

Prof. Dietrich Borchardt, UFZ, Prof. Philipp Fischer, AWI

Ocean Eddies

Prof. Burkard Baschek, HZG

Abrupt Permafrost Thaw

PD Dr. Julia Boike, AWI

Aims for Operation Phase from 2022

- Operational Observing System for event-driven observation campaigns
- including ad hoc operation for heat & droughts, hydrological extremes
- Access Procedure to the Sensor Systems based on scientific quality
- internal and external internal and external 10:15 Hall X1 Board X1.53

 Poster Friday 8:30–10:15 Hall X1 Board X1.53

implementation phase from 2017 until 2021, mainly via the test campaigns in cooperation with partners from research and practice

Thank you for Attention

First MOSES Test Campaign: Heat & Drought, July 2018 TERENO Eifel

Acknowledgements

- Helmholtz Association for funding
- involved centers for their support
- all who participate

in case someone wants to know

Campaign Management Concept

1. Conception and Planning

- MOSES Campaign: Concept and operational plan are developed bottom up by a HGF consortium + partners
- Steering committee or ...panel: checks quality and feasibility, assigns time frame

2. Operation

- Ocean Eddies and Permafrost: reliable time frame, find hot spot
- Heatwaves and Hydrologic Extremes: place and time uncertain ad hoc operation based on elaborated and approved campaign, MOSES modules and personnel are available at short notice
- 1-2 MOSES campaigns per year

weeks - months

3. Coordinated use of MOSES modules should be possible during idle times

Observation: Heat Wave Camapaign

start

warning time 3-4 Wochen
personell and modules operational
elaborated campaign incl. logistics

