Potentials for Power-to-Gas based subsurface energy storage in China Jianli Ma^{1,2,3}, Qi Li^{1,2,*}, Natalie Nakaten³, Michael Kühn^{3,4}

¹Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China ²University of Chinese Academy of Sciences, Beijing 100049, China ³GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany ⁴University of Potsdam, 14469 Potsdam, Germany

Supported by IRSM-GFZ Subsurface Utilization of Captured Carbon and Energy Storage System (Grant NO.1plus1-2018-01) and China Scholarship Council (Grant No.201804910875)

Corresponding author: qli@whrsm.ac.cn

EGU2019-14691

Ma et al. (2018)

China contributes more than 25% of the installed capacity of renewable energy (RE) in the world

CO₂ Emissions control in China

- Peak of CO₂ emissions will be reached in 2030
- Eight large-scale CCS (Carbon Capture and Storage) projects in development or construction

Li et al. (2017); REN 21 (2017);

Global carbon capture and storage institute (2017);

Energy research institute national development and reform commission of China (2015)

CCS reduces the process and economic efficiency and could be optimized by integration of CCUS

Instead of CCS only it should be combined with CCUS (Utilization)

- Pure CCS technology is not cost-effective
- Integration of the effective utilization of CO₂ is necessary

Excess energy loss due to intermittency and low controllability of renewables

Year	The national average rate of abandoned wind (%)	Abandoned wind power losses (10 ⁸ kWh)	Electricity loss (10 ⁸ RMB)	Raw coal (10 ⁴ t)
2011	16.23	123	66	5665
2012	17.12	208	112	9474
2013	10.74	162	88	7294
2014	8.00	126	68	5662
2015	15.00	339	183	15234
Summatio	n 13.00	959	518	43330

China wind energy abandoned from 2011 to 2015

Three Gorges hydropower station

Power-to-Gas (PtG): potential future energy system to even out fluctuation of RE and to consume CO₂

Flow chart of PtG energy system

Electrolysis

 $2H_2O \longrightarrow 2H_2 + O_2$

Methanation

 $CO_2 + 4H_2 \longrightarrow CH_4 + 2H_2O$

Storage

Surface and subsurface

Regeneration

Long-term storage of large amounts of RE is only possible via the PtG technology and synthetic methane

Energy efficiency of whole process can go down to **30-40%**, a level is also typical for conventional coal fired steam power plants. Development is expected to reach **40-50%** by 2030.

Different subsurface storage schemes available

Subsurface energy storage

 Superior economy and large storage capacity compared to surface gas tanks

Storage in different formations

- No mixing of CO₂ and CH₄
- Specific geological conditions required
- Energy waste without cushion gas

Storage in the same formation

- Economic benefits using cushion gas
- Mixing problem can not be avoided

Occurrence of excess wind and solar energy needs superposition with reservoirs in sedimentary basins

Wind energy

Solar energy

Sedimentary basins

- Abundant resources of wind and solar energy that provide excess energy are mainly located in West and North of China, especially in Xinjiang, Inner Mongolia, Gansu, Qinghai and Xizang
- Based on the distribution of RE, suitable potential reservoirs are in **Zhungeer**, **Tarim**, Qaidam, Ordos, and Songliao Basin

Northwest of China along the WEPP seems to be the best choice for PtG based subsurface energy storage

- 25 conventional underground gas storage facilities are mostly located close to the large CO₂ emission sources
- Large demand of energy storage
- Fragmented structures and insufficient RE in the East of China may restrict scale and efficiency of the PtG
- WEPP (West East Pipeline Project) connects energy production and consumption areas improving the feasibility of PtG

Gas storage facilities and CO₂ emissions in China

Application of a techno-economic model to determine overall costs of PtG based subsurface energy storage

Costs of electricity (COE) is 204 € / MWh

PtG based subsurface energy storage is economically viable compared to other energy storage technologies

Energy production technologies

POTSDAM

Potential for undesired negative consequences: gas leakage and induced seismicity

Earth and Environmental Sciences Area (EESA); Wilson et al. (2017)

Power-to-Gas based on subsurface energy storage has huge potential for application in China

- Ambitious emission reduction targets
- Worldwide 28% of installed capacity of RE
- Sedimentary basins offer the Long-term and large-scale storage of energy
- Competitive energy efficiency and expected to be improved
- Northwest of China along the WEPP seems to be the best choice for site selection
- Economically viable compared to other energy storage technologies
- Potential for undesired negative consequences
- Pilot project needs to be built in the near future

Thank you very much for your attention!

