

Glacier melt contribution to the runoff in Alpine catchments Saeid Ashraf Vaghefi^{1,2}, Karim C. Abbaspour² Anthony Lehmann¹ (1) University of Geneva, Department of Environmental and Aquatic Sciences, Geneva, Switzerland (2) Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland

Motivation and Objectives

Motivation:

SWATCH21 project: A project for linking eco-hydrologic processes and services to aquatic biodiversity at river and catchment levels

The aims of this work were to i) develop a realistic approach to integrate a glacier evolution model with the SWAT hydrologic model, and ii) examine the improvements in the simulated runoff using the coupled glacier-SWAT model.

Aletsch Catchment

♦ Aletsch Catchment Total Area: 196 km^2 , Glacier area: 81.7 km^2 , $15 \ km^3$ ice (20% of Swiss ice, 2014) ♦ Gorner Catchment Total Area: 79 km^2 , Glacier area: 57 km^2 , 4.2 km³ ice (2007)

RNG BARE

Solution

To achieve our objects, first we developed a framework with a flexible architecture for model coupling.

In this approach, the meltwater derived from glacier retreat is calculated based on the daily mass balance of the glacier and added to the SWAT model's water balance as a point source.

Finally, we tested the simulated discharge from SWTA and G-SWAT in two glacierized Alpine catchments.

http://www.swatch21.com

seyedsaeid.ashrafvaghefi@eawag.ch