Disaster Response: Leveraging Wide Area Earth Observation with Machine Learning

Dr Steven Reece
Dr Olga Isupova
Dr Danil Kuzin
Dr Brooke Simmons

Oxford University
Alan Turing Institute, London
Satellite Applications Catapult, Harwell

Challenge driven machine learning research

- Multi-sensor data including satellite imagery
- ❖ Applications in disaster management and environmental protection
- Co-designing/creating solutions with end-users

❖ Satellite Applications Catapult UKSA project (EASOS)

Oil source estimation

Rainfall nowcasting

Million parameter estimation

Human/Computer satellite imagery annotation

Scalable multi-sensor data fusion

Disaster Response Rescue Global

177 million disaster-related tweets the day after Japan earthquake in 2011.

11,180 km² area covering 10 islands/archipelagos following hurricanes Irma and Maria in 2017.

Hybrid human-automatic satellite imagery annotation

Principled Bayesian modelling framework

	c = labelled damage	c = labelled no damage
t = actual damage	70%	30%
t = actual no damage	25%	75%

State-of-the-art parameter inference methodologies

Uncertainty, risk and targeted data acquisition

Data

Uncertainty

Interpolation

Intelligent tasking

CC BY

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Further work ...

BCCNet: Bayesian classifier combination neural network

Olga Isupova*

olga.isupova@eng.ox.ac.uk

Danil Kuzin[‡]
dkuzin1@sheffield.ac.uk

Katherine Willis§

kathy.willis@zoo.ox.ac.uk

Yunpeng Li[†] yunpeng.li@surrey.ac.uk

Stephen J Roberts*

sjrob@robots.ox.ac.uk

Steven Reece*
reece@robots.ox.ac.uk

*Department of Engineering Science, University of Oxford, UK

†Department of Computer Science, University of Surrey, UK

*Department of Automatic Control and Systems Engineering, University of Sheffield, UK

*Department of Zoology, University of Oxford, UK

Abstract

Machine learning research for developing countries can demonstrate clear sustainable impact by delivering actionable and timely information to in-country government organisations (GOs) and NGOs in response to their critical information re-

NeurIPS workshop 2018

Machine Learning for the Developing World: Achieving Sustainable Impact

Python code: https://github.com/OlgaIsupova/BCCNet

- > New applications
 - > Tracking bomas in Africa
 - Mapping tailings dams in Brazil
 - > Health monitoring of schools across Africa
 - > Seismic fault detection world-wide

