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I. Abstract

Soil microorganisms play a major ecosystem function in
preventing mobile agricultural pollutants such as 2,4-D to
reach the water-table.

Spatial distributions of 2,4-D and its degraders can be
highly heterogeneous at cm-scale, as well as very dynamic
because of transport processes like diffusion and
advection-dispersion, suggesting a strong role of space-
time distributions. Yet the interaction between transport
processes and bacteria metabolism is still unknown.

Synthetic simulations based on previous experimental data
show that exposure to 2,4-D is not enough to explain
data. Data were explainable as soon as a ratio-
dependence was introduced. More generally, this shows
that dispersion of bacteria can reveal fine characteristics of
the behavior of bacteria.

II. Context

0.6 cm

Distributions of 2,4-D and bacteria:

• highly heterogeneous at cm-scale

• highly dynamic

Mainly shaped through a strong
interaction between

• transport processes, such as diffusion
and advection-dispersion

• biological metabolism characteristics,
such as substrate limitation, microbial
growth, mortality, lag phase

Vieublé et al., 2003

For this work, distribution heterogeneities are only considered at mm-to-cm scale.

Microbial degradation of soil
organic micro-pollutants, such
as 2,4-D, is not fully understand
today, and particularly how
spatiotemporal distributions
of bacteria and molecules
matter.

2,4-D is mainly prevented from
reaching the water table through
adsorption on soil particles and
microbial degradation. This last
process requires contact between
bacterial degraders and 2,4-D.

Conceptual framework

II. Models and Methods III. Results
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IV. Discussion

Starting point:

Laboratory experiments from
Pinheiro et al, 2015 (without
water input) and Pinheiro et al,
2018 (with water input).

Models for virtual experiments

•
𝜕𝑆

𝜕𝑡
= −𝑘𝑆→𝐴𝑆 + 𝑘𝐴→𝑆𝐴 − 𝑘𝑐𝑆 −
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𝑦
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𝜕𝐴

𝜕𝑡
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•
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Transport processes

•
𝜕𝑆
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+ 𝐷
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•
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𝜕𝑡
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In the following results: advection modeled with instant 
leaching out and isotropic dispersion

(all relations in concentration)
Monod model with delay
(Patarinska et al. 2000)

data

• repacked soil

• field capacity
(-31.6 kpa)

• 3 short water 
input events

Strong impact of transport (short water inputs):

• promote 2,4-D degradation

• promote bacteria dispersion

Contois model with delay

figure adapted from
Babey et al., 2017
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Deviations between experiments
and simulations
Normalized Root-Mean-Square Errors
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Deviation of treatments w/o dispersion
(mean of NRMSD)

Monod standard (Babey et al., 2017)

Monod, B0/100, KS/200, no α

Monod, µmax/2, KS/44, α/10

Monod, B0/10, KS/75, no α

Contois, KC = 10×KS
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Interaction of bacteria dispersion 
and biological model

time of inflexion of growth [d]

d
a
ta

Degradation for colocalized
treatment with water input
Monod: growth = f(S)
standard, no dispersion (optimal)

Degradation for colocalized
treatment with water input
Contois: growth = f(S,B)
KC=10×KS, progressive dispersion (optimal)

time [d]
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Huge discrepancy between model and data

• not possible to satisfyingly reproduce the data when the growth
rate depends only on exposure (as in Monod model)

• possible to reach the data with ratio-dependence: growth rate
depends also on bacteria density (as in Contois model)

Dispersion reveals
fine characteristics
of biological model

Formalizing the impact of bacteria dispersion on the
degradation

There is a balance for bacteria between avoiding substrate dilution
and avoiding competition for substrate.

This balance is the main factor in a substrate-dependent growth
model like Monod, but not anymore when ratio-dependence is
added, like in Contois model.

values (dispersion of S and B): 2𝑑𝑣𝑡 [m.day-1]
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