

EGU General Assembly 2019

Assessing the economic impacts of Environmental Research Infrastructures:

Overview of methodological tools

Regis Kalaydjian, Ifremer Vienna, 10 April 2019

Content

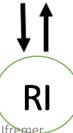
- Significance of Environmental Research Infrastructures for EU research and science
- Value of an ENV-RI: economic impacts and performance
- Case study: Euro-Argo

Significance of ENV-RIs for EU research

- Environment analysis & forecast = critical → need for ENV-RIs
- In-situ observing system + sensors on board satellites
- ENV-RIs → technology mix
- ENVRI PLUS (H2020) 2015-2019
 - All Earth system science domains
 - Atmosphere, marine, biosphere, solid Earth
 - Partnership: 20 RIs + 7 associated RIs

- Valuation of ENV-RI impacts
- Costs = investment costs + running costs
- Benefits for society & local communities

- Upstream impacts = impacts on suppliers
- Downstream impacts = impacts on data users and processors
- Feedback impacts = environmental damage prevention and mitigation


Upstream impacts

Equipment supply:

- In-situ platforms
- Satellite born equipment

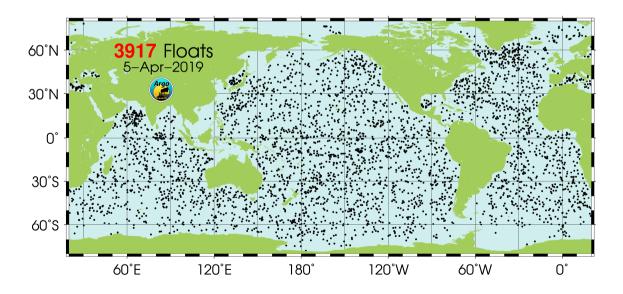
Environment monitoring
Measurement technology
Procurement and deployment

Downstream impacts

Primary data supply (quality, accessibility)

Processed data supply Forecast services Monitoring services

Environment Feedback impacts **ENV-RI** chain Upstream Man-made and natural **Environmental risks ENV-RI** Forecast, prevention Risk avoidance Damage mitigation Safety Downstream

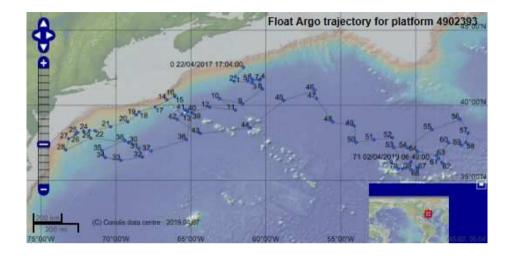


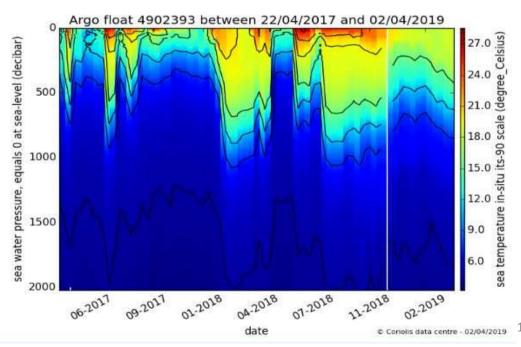
Case study: Euro-Argo

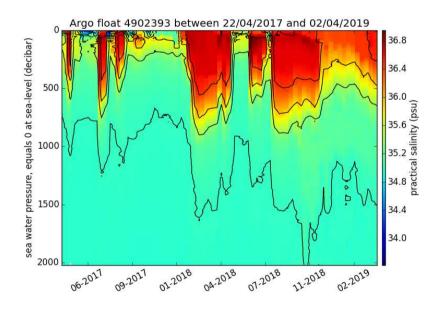
- Argo & Euro-Argo
- Global array of floats → T, S, ...



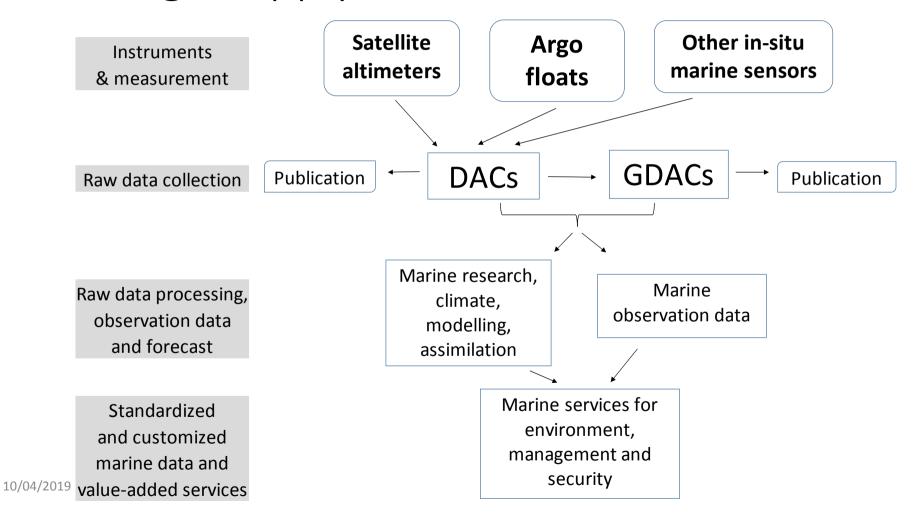
Case study: Euro-Argo







Case study: Euro-Argo



Euro-Argo supply chain

11

Economic valuation: upstream impacts

Objective:

Assess impacts of ENV-RI development In terms of:

Suppliers' production Suppliers' jobs

Tools and Methodology:

1/ Analyse suppliers
(Using survey and official statistics)

2/ Analyse ENV-RI demand (Using National Accounts)

Euro-Argo:

Identify suppliers
Inventory of demand

Economic valuation: downstream impacts

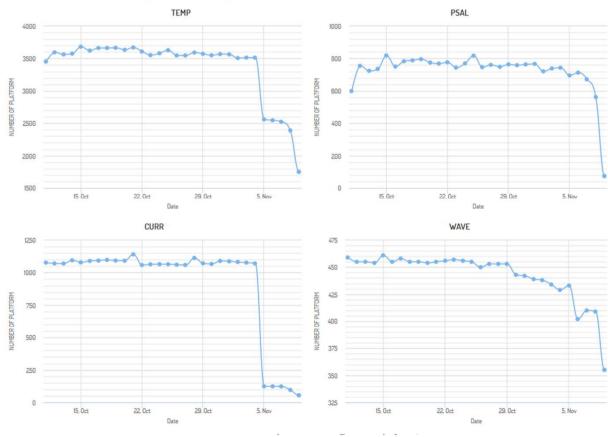
Objective:

Assess ENV-RI performance for:

- Primary data collection
- Data processing, assimilation & forecast

Tools and methodology:

- KPIs → data collection performance
- OSEs → forecast performance


Euro-Argo:

- KPIs Coriolis
- OSEs ← E-AIMS and others

Euro-Argo: example of KPI from Coriolis

10/04/2019

Example of OSE

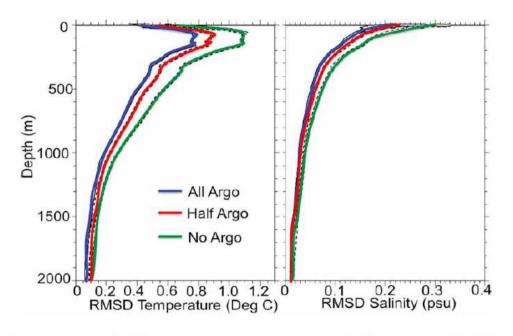


Figure 1. Global mean root-mean-squared difference (RMSD; OmB) profile for 2012 in temperature (left) and salinity (right): in the Mercator run assimilating all Argo floats, half Argo floats, and no Argo floats.

Extracted from: P.R. Oke, G. Larnicol, Y. Fujii, G.C. Smith, D.J. Lea, S. Guinehut, E. Remy, M. Alonso Balmaseda, T. Rykova, D. Surcel-Colan, M.J. Martin, A.A. Sellar, S. Mulet & V. Turpin (2015) Assessing the impact of observations on ocean forecasts and reanalyses: Part 1, Global studies, Journal of Operational Oceanography, 8:sup1, s49-s62, DOI: 10.1080/1755876X.2015.1022067

Economic valuation: feedback impacts

Objective:

Assess risk avoidance
Efficiency of public
funding

Tools and methodology:

Cost-benefit analysis =
RI investment + running costs
vs

Avoided costs (restoration, mitigation)

Euro-Argo:

Adapt CBAs performed: \frac{1}{2}
for regional GOOS
and for GMES

9 - Regis Kalaydjian, Ifremer

InterRisk: avoided costs for oil spill (Erika)

Estimates (€)	Damage cost	Avoided cost rate	Avoided cost
Coastline response	32 m	10%	3 m
Waste treatment	80 m	15%	8 m
Coastal fisheries	26 m	5%	1.3 m
Aquaculture	17.5 m	5%	0.9 m
Salt production	14 m	25%	3.5 m
Property damage	2.6 m	5%	0.1 m
Coastal tourism	280 m	10%	28 m
Secondary losses	1 m	5%	-
TOTAL	453.1		44.8 m

Conclusion

- Specific methods for upstream, downstream and feedback impacts
- Euro-Argo:
 - Need for longer time series to get relevant indicators
 - Use of a "metrics mix" combining economic indicators and non-monetary proxies
- Need for more case studies to check that methodology is relevant for all ENV-RIs
- Adapt assessment method to evolving ENV-RIs and experience