

Overturning of the Mediterranean Thermohaline Circulation

Robin Waldman¹, Nils Brüggemann², Anthony Bosse³, Rémi Pagès⁴, Samuel Somot¹, Michael Spall⁵, Florence Sevault¹, Melika Baklouti⁴

- ¹ CNRM, Météo France / CNRS, Toulouse, France
- ² University of Hamburg, Hamburg, Germany
- ³ University of Bergen, Bergen, Norway
- ⁴ MIO, Toulon, France
- ⁵ WHOI, Woods Hole, USA

The Mediterranean thermohaline circulation

→ Oceanic convection and sinking are usually assumed to be equivalent.

Schematic of the Mediterranean Thermohaline Circulation

Convection = Sinking?

→ Idealized simulations suggest they are separate

Snapshot of a convective « chimney » from a large eddy simulation

Jones and Marshall 1993

Downwelling from an idealized eddy-resolving (5km) model

Questions

- → Where and how does the Mediterranean thermohaline circulation sink?
- → What role does it play on biogeochemical exports?

NEMOMED12 + Eco3M-Med

→ Hindcast 1990-2012 physical and biogeochemical simulation (after 10-year spin-up)

Physics: NEMOMED12

- 75 levels (1 to 130m thick), 1/12° (5.5-7.5km)
- Flux forcing by ALDERA (12km) with SST damping
- 3D restoration in the Atlantic buffer zone
- Monthly river / Black Sea runoff climatology

Biogeochemistry: Eco3M-Med

- Offline forcing from NEMOMED12
- 6 plankton functional types
- A pool of dissolved organic matter and 3 pools of inorganic matter
- 2 compartments of detrital organic matter

Eco3M state variables

Baklouti et al 2006a, Pagès et al submitted

Overturning circulations

West Med. Meridional Overturning Streamfunction

Med. Zonal Overturning Streamfunction

Regions of downwelling

→ Most of the sinking within 50km of the coast

- → No sinking in the deep convection area
- → The Northern Current dominates the sinking

- → No sinking in the intermediate convection areas
- The Libyan and Egyptian Currents and the Aegean archipelago dominate the sinking

Dissolved organic carbon export

DOC transport at 129m

Dissolved organic carbon export

Fraction of advective DOC transport at 129m

→ 41% of the DOC export at 129m depth is advective

Dissolved organic carbon export

DOC advective transport at 129m (total: -17.5MmolC/a)

Dissolved organic carbon export

DOC advective transport at 129m (total: -17.5MmolC/a)

→ 69% of the advective export occurs within 50km of boundaries

From vorticity to downwelling

→ Vertical velocities induce an intense vorticity that must be balanced over the long run (Vallis 2006, Madec 2008):

Planetary vortex stretching
$$f \frac{\partial W}{\partial z}$$

→ Diagnostic vorticity balance of vertical velocities (Vallis 2006, Madec 2008):

Boundary sinking and vorticity

- Waldman et al, GRL, 2018b
 - → Lateral dissipation at the coast allows the sinking
 - → Lateral advection shifts the sinking offshore

Transport along the Northern current

→ Estimated 0.19±0.17Sv of sinking at 470m depth along the Northern Current

From the « conveyor belts » to the « sinking rings »

Link between convection and sinking

Annex: regions of downwelling

Annex: regions of downwelling

1. The momentum trend in NEMO model (Vallis 2006, Madec 2008):

$$\frac{\partial \mathbf{U}_h}{\partial t} = \left[-\left[(\nabla \times \mathbf{U}) \times \mathbf{U} + \frac{1}{2} \nabla \left(\mathbf{U}^2 \right) \right]_h - f \mathbf{k} \times \mathbf{U}_h - \frac{1}{2} \nabla \mathbf{v}_h p + \mathbf{D} \right] + \mathbf{F}$$

$$\mathbf{Momentum \ trend} \qquad \mathbf{Advection} \qquad \mathbf{Coriolis} \qquad \mathbf{O} \qquad \mathbf{Dissipation \ Friction}$$

2. Computation of its Curl=vorticity (Vallis 2006):

3. Assumption of steady state (1980-2012 mean) and vertical integration:

$$\boxed{\overline{w}(z)} = \frac{1}{f} \int\limits_{z}^{0} \left(Curl\left(\overline{A}_h \right) + Curl\left(\overline{A}_z \right) - \beta \, \overline{v} + Curl\left(\overline{D}_h \right) + Curl\left(\overline{D}_z \right) + \overline{F}_B \right) dz$$

$$\begin{array}{c} \text{Vertical velocity} \\ \text{(from vortex} \\ \text{stretching)} \end{array} \qquad \begin{array}{c} \text{Lateral} \\ \text{advection} \end{array} \qquad \begin{array}{c} \text{Vertical} \\ \text{advection} \end{array} \qquad \begin{array}{c} \text{Beta} \\ \text{effect} \end{array} \qquad \begin{array}{c} \text{Lateral} \\ \text{dissipation} \\ \text{(+Surf. friction)} \end{array} \qquad \begin{array}{c} \text{Bottom} \\ \text{friction} \end{array}$$

- 1) Recovering online the terms of the momentum budget (neglecting ATF, KEG, SPG, HPG and ATF)
- 2) Computing the model's curl to deduce the vorticity balance
- 3) 4-point interpolation of the vorticity trend terms to the T-grid, and 9-point smoothing of w to be comparable to the stretching from the vorticity budget. Each w is ponderated by the grid cell volume to mask land points.
- 4) Vertical integration of the vorticity trend terms from surface (assuming w(0)=0) to deduce w from stretching and the contributions to it.
- 5) Horizontal integration to deduce downwelling rates per basin
 - → Remaining approximations:
 - Vorticity trend and non-physical terms (pressure gradient, divergent advection, Asselin filter) neglected, small error
 - Approximations related to smoothing interpolation: small error except locally
 - w(0)=0, small error

High accuracy of the w reconstruction.

- The 9-point smoothing of w can generate large differences locally but mostly conserves the integrated volume flux
- The interpolated stretching works almost perfectly far from borders (the DWF area), and the biases are reasonable when including borders (~1-10%)
- The sum of physical terms of the vorticity budget (excluding trend, pg, keg, atf, w(0))
 is very close to the stretching term

- w stretch captures very well the downwelling as a function of distance from the coast
- · Most of its «error» is close to the boundary and due to the inherent smoothing

Annex: spatial pattern of contributions

- In the NWMed, both Dh and Ah determine the spatial pattern of the downwelling, the former close to the coast and the latter offshore.
- Dz and beta are also non-negligible

Annex: spatial pattern of contributions

In the EMed, most of the downwelling (~85%) occurs at the last grid point because of Dh, but also Ah exports some of it (~15%) offshore.

Dz is also important and counteracts Dh and Ah, and bottom friction contributes

-0.045

Annex: sensitivity to seasonal cycle

- There are indeed large seasonal variations of the overturning (especially deep)
- The sinking remains coastal throughout the year

Annex: sensitivity to seasonal cycle

- The location of sinking varies a lot throughout the year
- But the main coastal regions previously identified remain, and convective regions don't contribute to sinking

Basin	Deep western upwelling rate	Basin	intermediate eastern upwelling rate	
Western Mediter- ranean	0.00Sv / 0.00Sv	Eastern Mediter- ranean	-0.89Sv / -0.77Sv	
Alborán	+0.12Sv / -0.03Sv	Adriatic	Total: $-0.18Sv / -0.11Sv$ BC: $-0.20Sv / -0.13Sv$	
Algerian	+0.02Sv / 0.00Sv	Aegean	Total: $-0.37Sv$ CIW: $-0.03Sv$ Archipelago (Total - CIW)	/ +0.04 <i>Sv</i>
Northwestern Mediter- ranean	Total: $-0.09Sv / +0.05$ DW: $+0.03Sv / +0.06Sv$ BC-W: $-0.02Sv / -0.06Sv$ BC-N: $-0.10Sv / -0.04Sv$ BC-E: $-0.09Sv / -0.02Sv$		Total: $-0.05Sv / -0.28Sv$ BC-S: $-0.15Sv / -0.22Sv$ BC-W: $-0.05Sv / +0.01Sv$ BC-N: $+0.21Sv / -0.10Sv$	v v
Tyrrhenian	$-0.06Sv \ / \ -0.02Sv$	Levantine	Total: -0.30Sv / -0.24Sv LIW: +0.02Sv / +0.12Sv BC-S: -0.15Sv / -0.23Sv BC-E: -0.05Sv / -0.05Sv BC-N: -0.05Sv / -0.01Sv	บ บ

Table SI 1. Basin contributions to NEMOMED12 April / October average deep (930m) western and intermediate (129m) eastern sinking (Sv). Main downwelling regions are in bold.

Annex: sensitivity to lateral boundary conditions

- The location of sinking varies a lot throughout the year
- But the main coastal regions previously identified remain, and convective regions don't contribute to sinking

Annex: Subpolar North Atlantic

 Downwelling in the Subpolar North Atlantic, POP 1/10°, normal year forcing (courtesy Nils Brüggemann)

Annex: observed acceleration of deep boundary currents

Annex: DOC export in Eco3M-Med

^{→ 71%} of the advective export occurs within 50km of boundaries

Annex: DOC export in Eco3M-Med

DOC diffusive transport at 129m **DOC** advective transport at 129m

Annex: DOC export in Eco3M-Med

Table 1: Average advective, diffusive and total export of dissolved organic carbon at 129m depth $(MmolC.a^{-1})$.

Domain	Sub-domain	Export ADV	Export DIF	Total
MED	Total	14.5	22.3	36.8
WMB	Total	0.7	0.7	1.4
\mathbf{EMB}	Total	13.8	21.6	35.4
Adriatic	Total	0.2	0.4	0.6
	BC	0.1	0.3	0.4
$\mathbf{A}\mathbf{e}\mathbf{g}\mathbf{e}\mathbf{a}\mathbf{n}$	Total	0.9	2.0	2.9
	$_{ m CIW}$	0.2	0.9	1.1
	Archipelago	0.6	1.1	1.7
Ion	Total	6.0	7.4	13.4
	BC-S	2.1	1.6	3.7
	BC-W	1.2	0.8	2.0
	BC-N	0.5	1.0	1.5
${ m Lev}$	Total	6.7	11.8	18.4
	$_{ m LIW}$	0.6	2.0	2.6
	BC-S	2.8	1.9	4.7
	BC-E	1.4	1.6	3.0
	BC-N	1.0	2.2	3.2