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Data
17 581 of waveform are used in this study (Figure 1). Recorded waveform are result of an 388 of crustal
earthquakes which are depth less than 50 km. Arrival of the P wave of each signal picked manually and
signals are trimmed between the P wave arrival and 40 s ahead of the P wave arrival. Sampling rate of
the data is fixed to 20Hz. 456, 407 and 458 of the signals are identified as impulsive signals by Shahi and
Baker (2014); Chang et al. (2016); Ertuncay and Costa (2019) respectively. Signals that are classified as
pulse shaped varies between the studies depending on the method that used on data. We also manually
picked the impulsive signals and train our model with that label. We then compare the manually picked
results with previous studies.

Figure 1: Spatial distribution of the seismic stations that are used in this study. Red colored stations are recorded impulsive
signals according to any of the previous studies explained in Previous Studies whereas black color indicates the stations that
are not contain any impulsive feature.

Data Augmentation
442 out of 17 581 waveform are labelled as impulsive by visual investigation. Since the ratio between
impulsive (positive) and non impulsive (negative) signals are too low we incremented the number of
impulsive signals by generating artificial ones. For each positive signal we generate as many signals as
the ratio between positives and negatives. Artificial impulsive signals are created adding a zero mean
Gaussian noise with 0.1 standard deviation.

Previous Studies

Shahi and Baker (2014)
Classification algorithm uses two criteria to determine whether the signal has impulsive or non-
impulsive behavior. First criterion is the hazardousness of the signal. If PGV is less than 30 cm/s,
it is considered as non-hazardous signal. Second criterion is that the pulse indicator (PI) values should
be higher than 0.85. PI is calculated as Eq. 1:

PI =
1

1 + e−23.3+14.6(PGV Ratio)+20.5(energy ratio)
(1)

Chang et al. (2016)
The algorithm determines a region around the PGV and determines the energy ratio between the pulse
region and the total energy of the signal by taking the squared values on both signals. The region around
PGV is calculated by using a least-square fitting for various pulse periods, then the one with the smallest
residual is used for the pulse region. The energy ratio is then calculated as Eq. 2:
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Ertuncay and Costa (2019)
Ertuncay and Costa (2019) used a combination of wavelet analysis and energy function of the wave-
form. Criteria for impulsive signals are explained in Eq. 3. If PGV value is greater than 30 cm/s and
threshold in Eq. 3 is exceeded, signal is identified as impulsive.(∫ te

ts
v2(τ )dτ∫∞

0 v2(τ )dτ
+

∫ te
ts
WPS(τ )dτ∫∞

0 WPS(τ )dτ

)
2

≥ 0.30 (3)

An example of a signal which is determined by all previous studies that we explained can be seen in
Figure 2.

Figure 2: Velocity waveform of Amatrice Earthquake that is recorded at CLO station on October 30, 2016. Velocity
waveform and extracted impulsive signals by Shahi and Baker (2014); Chang et al. (2016); Ertuncay and Costa (2019) are
demonstrated with black, red, blue and green colors, respectively.

Convolutional Neural Network

We trained a Convulational Neural Network as de-
scribed in Figure 3. We used as activation function
ReLu for all layers except the last one in which
we used a sigmoid. The loss function is defined
as the binary cross-entropy and the learning rate
is set accordingly with Adam optimization algo-
rithm Kingma and Ba (2014). The weights of the
neural network are initialized using the Glorot nor-
mal initializer. The network as been trained using a
10-fold cross-validation procedure which splits the
whole dataset in two portions: the training and the
testing one. The training set has been divided into
two different portions: training and validation. The
first one has been used in order to effectively train
the network, whereas the second one as been used
to stop the learning if the loss function start to grow
up. Finally, we measured the False Positive Rate
(FPR) and False Negative Rate (FNR) on the testing
set. Accordingly with the cross-validation proce-
dure, these steps have been repeated 10 times, vary-
ing the portions used as training and testing.

Figure 3: Structure of the Convolutional Neural Network used
in this study.

Results

FPR FNR
Our proposal 0.023 0.249
Shahi and Baker (2014) 0.000 0.007
Chang et al. (2016) 0.500 0.008
Ertuncay and Costa (2019) 0.000 0.009
Zhai et al. (2018) 0.480 0.22

Conclusions

• In order to train the model, manually picking is necessary and picking the pulse shaped signals visu-
ally may cause disagreement with previous works. It is due to fact that identify the signal as pulse
shape is subjective in some cases.

• Since the manual identification of impulsive signals is hard and subjective, FPR & FNR can be re-
calculated depending on the manually picked dataset.

•Our method distinguish the impulsive and not impulsive signals with considerebily high accuracy.

Future Plans

• Create a baseline with a combined results of previous works instead of using manually picked data.

•Use more sophisticated data augmentation methods such as rotating impulsive signals between 0o -
90o and adding Gaussian noise afterwards.

• Identifying the starting and ending points of the impulsive signals.
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