

Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation using a Land Data Assimilation System

Albergel C.¹, E. Dutra², B. Bonan¹, Y. Zheng¹, S. Munier¹, G. Balsamo³, P. de Rosnay³, J. Muñoz-Sabater³ and J.-C. Calvet¹

- 1 CNRM Université de Toulouse, Météo-France, CNRS, Toulouse, France
- 2 Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, Portugal
- 3 ECMWF, Reading, UK

Study the vegetation and terrestrial water cycles

 Current fleet of Earth Satellite missions holds an unprecedent potential to quantify Land Surface Variables (LSVs)

[Lettenmaier et al., 2015, Balsamo et al., 2018]

- Spatial and temporal gaps & cannot observe all key LSVs (e.g. RZSM)
- Land Surface Models (LSMs) provide LSV estimates at all time/location
 LSMs have uncertainties
- Through a weighted combination of both, LSVs can be better estimated than by either source of information alone [Reichle et al., 2007]

Data assimilation

Spatially and temporally integrates the observed information into LSMs in a consistent way to unobserved locations, time steps and variables

Study the vegetation and terrestrial water cycles

LDAS-Monde: global capacity offline integration of satellite observations into a land surface model fully coupled to hydrology

LDAS-Monde involves

- Land surface model: ISBA-A-gs, simulates the diurnal cycle of water and carbon fluxes, plant growth and key vegetation variables
- **River routing system: CTRIP** (CNRM version of Total Runoff Integrating Pathways)
- Data assimilation routines (SEKF, EnSRF*, PF)

Study the vegetation and terrestrial water cycles

LDAS-Monde: global capacity offline integration of satellite observations into a land surface model fully coupled to hydrology

LDAS-Monde involves

- Land surface model: ISBA-A-gs, simulates the diurnal cycle of water and carbon fluxes, plant growth and key vegetation variables
- **River routing system: CTRIP** (CNRM version of Total Runoff Integrating Pathways)
- Data assimilation routines (SEKF, EnSRF*, PF)

LDAS-Monde successfully validated

- Agricultural statistics (e.g. Dewaele et al., 2018, HESS)
- River discharge (e.g. Albergel et al., 2017, GMD, 2018, RS)
- In situ measurements of soil moisture (e.g. Albergel et al., 2018, RS)
- Evapotranspiration from GLEAM, Fluxnet2015 (e.g. Albergel et al., 2018, RS)
- Gross Primary Production from FLUXCOM (e.g. Tall et al., 2019)
- Sun-Induced Fluorescence (e.g. Leroux et al., 2018, RS, Tall et al., 2019, RS)

*Bonan et al., EGU2019-14804

LDAS-Monde experimental set up

Model	Domain	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA Multi-layer soil model CO ₂ -responsive version (Interactive vegetation)	Global (2010 – 2018)	ERA-5 Res.: 0.25°x0.25°	SEKF	SSM (CGLS ASCAT SWI + cdf matching) LAI (CGLS GEOV2)	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

ASCAT SSM [m3m-3] mean Obs.: 2010-2018

GEOV2 LAI [m2m-2] mean Obs.: 2010-2018

Control variables (CVs) are directly updated thanks to their sensitivity to the observed variables
Other variables are indirectly modified through biophysical processes and feedbacks in the model

LDAS-Monde experimental set up

Model	Domain	Atm. Forcing	DA Method	Assimilated Obs.	Observation Operator	Control Variables	Additional Option
ISBA Multi-layer soil model CO ₂ -responsive version (Interactive vegetation)	Global (2010 – 2018)	ERA-5 Res.: 0.25°x0.25°	SEKF	SSM (CGLS ASCAT SWI + cdf matching) LAI (CGLS GEOV2)	Second layer of soil (1-4cm) LAI	Layers of soil 2 to 8 (1-100cm) LAI	Coupling with CTRIP (0.5°)

2 LDAS-ERA5 experiments : Model (no assimilation) and Analysis (assimilation)

RMSD: Model vs. Obs

RMSD: Analysis vs. Obs

LDAS-Monde goes global

Selection of 19 regions known for being potential hot spots for droughts and heat waves

EGU2019 | Vienna | Austria | 7–12 April 2019

Page 7

LDAS-Monde goes global

Monthly anomalies for 2018 with respect to 2010-2018

The Earth Observations point of view: CGLS GEOV2 and SWI Monthly anomaly (scaled by stdv)

Page 9

LDAS-Monde : Leaf Area Index

Seasonal cycles, RMSD and Correlations values (Model, Analysis)

- Seasonal cycles:
- → 2018 quite different from 2010-2017
- smaller differences between Model and Analysis for 2018 than for 2010-2017 (True for RMSD and R values as well)
- Analysis improvements over Model simulation

- Seasonal cycles:
- 2018 quite different from 2010-2017
- Analysis improvements over Model simulation

Such an extreme event needs more attention!

Using ECMWF high resolution operational analysis to force LDAS-Monde (<u>LDAS-HRES</u>, 0.10°x0.10°) and complement the use of ERA5 (<u>LDAS-ERA5</u>, 0.25°x0.25°)

Despite the spatial resolution, ERA5 production cycle (IFS Cycle 41r2) is still close to that of the HRES (IFS Cycle 41r2 to 43r3 from 2016 and 45r1 from June 2018)

LDAS-ERA5, LDAS-HRES

- 4 experiments: 2 analyses and their 2 openloops
- Seasonal scores over April 2016 to December 2018 : each experiments vs. LAI obs.

- ERA5 (blue) and HRES (cyan) driven open loop are comparable, HRES being better
- Analysis (red and pink) add skill to both which is indication of healthy behaviour

From monitoring to forecasting using LDAS-HRES (0.1°x0.1°):

LAI forecast up to 8-days ahead (initialised by LDAS-Monde) vs. Openloop

e) RMSD differences :LDAS_fc_d8 - Open-loop

49 % of the domain improved by the forecast initialised by an analysis

d) RMSD differences : Analysis - Open-loop

82 % of the domain improved by the analysis

- Forecast experiment with up to 8-day lead time, initialised by the analysis, better than an open-loop!
- Forecast of LSVs is also a matter of initial conditions!

Conclusions

LDAS-Monde: combining LSM, satellite EOs and atmospheric forcing

Great potential to monitor and forecast the impact of extreme weather on LSVs

Global LDAS-Monde provides a model climate as reference for anomalies of LSVs
 Significant anomalies trigger more detailed monitoring and forecasting activities

LDAS-Monde ready for use in various applications

- Reanalyses of land ECVs
- Water resource / drought / vegetation monitoring
- Detection of severe conditions over land and initialisation of LSVs forecast

Open LDAS-Monde freely available:

https://opensource.umr-cnrm.fr/projects/openIdasmonde contact: clement.albergel@meteo.fr **** @CAlbergel

Albergel, C.; Dutra, E.; Bonan, B.; Zheng, Y.; Munier, S.; Balsamo, G.; de Rosnay, P.; Muñoz-Sabater, J.; Calvet, J.-C. Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation. Remote Sens. 2019, 11(5), 520; https://doi.org/10.3390/rs11050520.

an Open Access Journal by MDPI

Data Assimilation of Satellite-Based Observations into Land Surface Models

https://www.mdpi.com/journal/remotesensing/special_issues/LSM

Guest Editor

Dr. Clement Albergel

Météo-France/CNRS, 42, Av. G. Coriolis31057 Toulouse Cedex 1, France Website 1 | Website 2 | E-Mail Interests: land surface modelling; remote sensing; data assimilation

Guest Editor

Dr. Emanuel Dutra

Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, FCUL, Campo Grande, Lisbon, Portugal Website | E-Mail Interests: meteorology; hydrology; numerical weather prediction; climate modeling

Guest Editor

Dr. Sujay Kumar

Hydrological Sciences Lab, NASA Goddard Space Flight Center, 8800 Greenbelt Rd, Greenbelt, MD, 21042, USA

Website | E-Mail

Interests: land surface modeling, data assimilation, remote sensing, high-performance computing, machine learning

Guest Editor

Dr. Christoph Rüdiger

Department of Civil Engineering, Faculty of Engineering, 23 College Walk, Monash University, VIC 3800, Australia (Clayton campus)

Website | E-Mail

Interests: soil moisture; remote sensing; hydrology; climate change

Guest Editor

Dr. Dongryeol Ryu

Department of Infrastructure Engineering, Melbourne School of Engineering, The University of Melbourne, Victoria 3010, Austrilia Website | E-Mail Phone: +61-3-8344-7115

Interests: remote sensing; hydrological modelling; land surface processes; environmental data analysis; scientific data visualisation; woodwork

Guest Editor

Dr. Nemesio Rodriguez-Fernandez

Centre d'Etudes Spatiales de la Biosphère (CESBIO), Centre National de la Recherche Scientifique (CNRS), 18 avenue. Edouard Belin, bpi 2801, 31401 Toulouse cedex 9, France

Website | E-Mail

Phone: +33 561 55 8577

Interests: microwave remote sensing; soil moisture; biomass; interferometry; neural networks; data assimilation

