European Geosciences Union General Assembly 2019, Vienna | AUSTRIA | 7 -12 April

UNIVERSITÀ DEGLI STUDI DI MILANO

صيئة المساحة الجيولوجية السمودية SAUDI GEOLOGICAL SURVEY www.sgs.org.sa

A rheological model of the rift-drift transition in the Red Sea

<u>Antonio Schettino</u>⁽¹⁾, Giorgio Ranalli⁽²⁾, Elisa Fierro⁽¹⁾, Pietro Paolo Pierantoni⁽¹⁾, Davide Zanoni⁽³⁾, Eugenio Turco⁽¹⁾ & Najeeb Rasul⁽⁴⁾

¹University of Camerino – School of Science and Technology, Camerino, Italy ²Department of Earth Sciences, Carleton University, Ottawa, Canada ³Dipartimento di Scienze della Terra "A. Desio", Milano, Italy ⁴Saudi Geological Survey, Jeddah, Saudi Arabia

E-mail: antonio.schettino@unicam.it

Formation of a new extensional plate boundary: Propagating ridge / rift system

Assuming steady creep: $\dot{\varepsilon}_{s} = 10^{-18} \text{ s}^{-1}$ and that stress changes at a much lower rate than strain: $\dot{\varepsilon}(t) - \dot{\varepsilon}_{s}(t) = \frac{1}{\gamma^{n}\eta_{s}^{*}} \left[\sigma^{1-n} - \frac{(1-n)Y_{K}}{\gamma^{n}\eta_{s}^{*}} t \right]^{\frac{n}{1-n}} \qquad \eta = \frac{1}{2\dot{\varepsilon}} \left\{ \frac{(1-n)Y_{K}}{\gamma^{n}\eta_{s}^{*}} t + \gamma^{1-n} \left[\eta_{s}^{*} \left(\dot{\varepsilon} - \dot{\varepsilon}_{s} \right) \right]^{\frac{1-n}{n}} \right\}^{\frac{1}{1-n}}$

Calibration of rheological parameters: The post-rift stage

Linear anelastic relaxation test:

 $\dot{\varepsilon}(t) = -(\varepsilon_0 / \tau)e^{-t/\tau}$

Non-linear anelastic relaxation test:

 $\dot{\varepsilon}(t) = -\frac{1}{\eta_T^*} \Big[Y_K \varepsilon(t) \Big]^n$

∜

 $n \neq 1$, odd integer

Dry rheology ; $\gamma = 0.1$ is in agreement with geophysical/geological observation

Evidence of post-rift anelastic relaxation: 1 – Finite strains around the Red Sea

$$\varepsilon_{yy}(\zeta,t) = \ln\left[1 - \frac{\omega_0 R \sin(\zeta/R)}{L_0}(t-t_0)\right]$$

- Black line: Kinematic strain as a function of the distance ζ from the Euler pole of relative motion between Nubia and Arabia;
- Red line: Finite transversal strain, obtained from observed β factors, along the passive continental margins facing the oceanized region of the Red Sea;
- ✓ Green line: Finite transversal strain along the active rifting region of the northern Red Sea;
- ✓ Violet line: Recovered

strain

Evidence of post-rift anelastic relaxation: 3 – Geology (Strike-slip faults)

Evidence of post-rift anelastic relaxation: 3 – Geology (Reverse faults and folds)

Evidence of post-rift anelastic relaxation: 3 – Geology (Reverse faults and folds)

Evidence of post-rift anelastic relaxation: 3 – Geology (reverse faults)

Evidence of post-rift anelastic relaxation: 3 – Geology (Strike-slip & reverse faults)

Lower-Hemisphere, Equal Angle Projection (Wulff)

Evidence of post-rift anelastic relaxation: 3 – Geology (Strikeslip & reverse faults)

Lower-Hemisphere, Equal Angle Projection (Wulff)

Numerical Experiment: Rifting Stage Model

T [K]

Mass conservation:
$$\Phi = \oint_{\mathbf{p}} \rho \mathbf{v} \cdot d\mathbf{S} = 0$$

Equations of motion (Navier-Stokes): $\rho \dot{v}_i = -\frac{\partial p}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\eta \left(\frac{\partial v_i}{\partial x_j} + \frac{\partial v_j}{\partial x_i} \right) + \lambda \frac{\partial v_k}{\partial x_k} \delta_{ij} \right] + \rho g_i$
Energy conservation: $\rho c_p \dot{T} - \alpha T \dot{p} = \Phi + k \nabla^2 T$
Equation of state: $\rho = \rho_0 \left[1 - \alpha \left(T - T_0 \right) \right]$

Numerical Experiment: Rifting Stage Model

Transition zone: η

 $\eta = 10^{23} \text{ Pa s}$

Numerical Modelling: Velocity Field

T
7
1
R
$\langle \langle \rangle$
1.1

				-	-	-	-	1	\rightarrow				\rightarrow		
		-	-	-	-	-		1.							
							-	1.	- /. ·						_
				-	-	-	1		1	_\	1		-		
												-		-	5
								1		-	_			-	
								1		+	-	-	-	+	
								× .	~						\sim
								1.1	~		-	-	-	-	
							-		-	-	-	-	-	-	1 (A)
			· ·					1						1.00	
			15 mm y	nm yr⁻	·I ·										
t = 15 N	1yrs													-	

T [K]

CC

Ē

BY

Numerical Modelling: Velocity Field $-v_x$

Numerical Modelling: Velocity Field $-v_y$

Numerical Modelling: Velocity Field -v(x,0)

Blue = 0 Myrs; Red = 5 Myrs; Green = 10 Myrs; Orange = 15 Myrs.

Offset of the rift axis at t = 0, 5, 10, 15Myr (dashed lines).

Numerical Modelling: Stress 2nd Invariant

Numerical Modelling: Stress

Stress [MPa]0.0Myrs

Future research: Post-rift Stage Model

Working hypotheses:

- Stress is not relaxed instantaneously along the rift zone;
- Stress is relaxed by propagation of an ultra-slow stress wave;
- Ultra-slow stress waves are solitons that travel at a velocity of 40–50 km/Myr;

Conclusions

- The lithosphere mantle accumulates strain energy during the rifting stage. The best-fitting non-linear rheology requires a transient viscosity 1–2 orders of magnitude less than the steady-state viscosity;
- After break-up, this energy is released by anelastic relaxation.
 During the strain recovery, the passive margins experience post-rift tectonic inversion

Thank You

()

