Offshore wind farm wakes in global circulation model MPAS compared with WRF and measurements

Marc Imberger, Xiaoli Guo Larsén, Neil Davis

DTU Wind Energy, Technical University of Denmark (DTU)

DTU Wind Energy Department of Wind Energy

- Topic: Evaluation of MPAS capabilities for wind resource assessment in comparison with currently used method (WRF nesting)
- MPAS: Model for Prediction Across Scales
- WRF: Weather Research and Forecasting
- WRF successful and established tool with known limitations
- MPAS tackles limitations but introduces other challenges
- Leading question: Assessment of MPAS capabilities for wind resource assessment
- Capabilities analyzed in different areas, today: wind farm wakes

3 DTU Wind Energy

Introduction Motivation

- Increasing wind farm size and density, especially offshore
- Farm to farm interaction becomes important
- Need for accurate and reliable modeling across scales (time and space)
 - Economic impact
 - Impact on local/regional environment

Source: 4Coffshore, Global Offshore Renewable Map , https://www.4coffshore.com/offshorewind/

Sandbank & DanTysk: SCADA Data

Methods

from individual turbines, among others

- wind speed (hub-height)
- nacelle orientation
- power production
- SCADA provided by Vattenfall
- Fino 3: Meteorological and oceanic quantities at several heights, among others
 - wind speed (several heights)
 - wind direction (several heights)

DTU ₩

	WRF (V3.7.1)	MPAS (V6.1)	
nodel type 1or. discretization	limited area model regular lat/lon grid	global model unstructured centroidal Voronoi mesh	
vert. discretization nesh refinement	pressure based, terrain following one-way nesting, 18km/6km/2km	height-based, hybrid circular refinement region, approx. resolution: 3.8km, 225282 cells	

Methods

Model setup II - Simulation Framework and Post-processing

- simulation time (WRF/MPAS)
 - 6 day total simulation time (2017-02-12 to 2017-02-18)
 - 24h spin-up
 - initialized by CFSv2 forecast product
- lateral boundaries (only WRF)
 - 6-hourly update interval
 - CFSv2 forecast product
- \bullet Vertical interpolation (WRF/MPAS) to fixed height above sea level
- Horizontal regridding using bi-linear interpolation (MPAS)

DTU

=

Methods Model setup II - Physics

Parameterization	WRF	MPAS	
similar:			
Microphysics	Thompson (non-aerosol aware)†		
Land surface	Noah		
Boundary layer	MYNN3		
Surface layer	MYNN3		
Radiation	RRTMG†		
Wind farm wake	Volker et al. 2015		
different:			
Cumulus	Kain-Fritsch	scale-aware	
	(only d01)	Grell-Freitas	
Cloud fraction	off	Xu and Ran-	
		dall 1996	

† versions differ

Results Wind Farm Wake Representation

Results Wind farm aggregated comparison (Sandbank)

Aggregated wind rose over SandBank(2017-02-13T00:00:00 to 2017-02-18T00:00:00)

Offshore wind farm wakes in global circulation model MPAS compared with WRF and measurements 25.4.2019

Results Wind farm aggregated comparison (Sandbank)

Wind speed

Normalized power production

Results Spectral Analysis (Frequency domain)

- Expected slope of $f^{-2/3}$ present in measurements and models
- generally reduced energy content in higher frequencies in simulations
- regridded MPAS indicates lack in high frequency components, could be introduced by smoothing due to spatial interpolation
- Relatively short simulation time, further confirmation needed

Results Spectral Analysis (Wavenumber domain)

- Tendency as expected from measurements (Nastrom & Gage 1985) and theory
- WRF effective resolution of $7\Delta x$ (Skamarock 2004) matches
- MPAS effective resolution $6\Delta \tilde{x}$ (Skamarock et al.2014) based on approx. resolution conservatively approximated
- Energy content in regridded MPAS generally lower than WRF (possible variance reduction due to smoothing effect and lower resolution)

Conclusion & Further work

- MPAS shows promising results on larger temporal and spatial scales (considering resolution)
- Challenges in local scales and time domain (phase shifts, reduced variability), difficult to compare
- Knowledge transfer not straight forward
- Representative resolution of unstructured mesh difficult to quantify
- Impact of regridding on analysis needs to be addressed
- Longer and more refined MPAS simulation

Thanks!

References:

Volker, P. J. H., Badger, J., Hahmann, A. N., & Ott, S. (2015). The explicit wake parametrisation V1.0: A wind farm parametrisation in the mesoscale model WRF. Geoscientific Model Development, 8(11), 3715–3731. https://doi.org/10.5194/gmd-8-3715-2015

Nastrom, G., and K. Gage, 1985: A climatology of atmospheric wavenumber spectra of wind and temperature observed by commercial aircraft. J. Atmos. Sci., 42, 950–960, doi:10.1175/ 1520-0469(1985)042,0950:ACOAWS.2.0.CO;2

Skamarock, W. C. (2004). Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra. Monthly Weather Review, 132(12), 3019–3032. https://doi.org/10.1175/MWR2830.1

Skamarock, W. C., Park, S.-H., Klemp, J. B., & Snyder, C. (2014). Atmospheric Kinetic Energy Spectra from Global High-Resolution Nonhydrostatic Simulations. Journal of the Atmospheric Sciences, 71(11), 4369–4381. https://doi.org/10.1175/JAS-D-14-0114.1

Acknowledgments:

Great thanks to Vattenfall AB for providing the SCADA data for the two wind farms Sandbank and DanTysk and to the Bundesamt für Seeschifffahrt und Hydrographie (provider) resp. FuE-Zentrum Fachhochschule Kiel GmbH (operator) for the Fino3 measurement data.

The research is conducted within the Danish ForskEL-EUDP OffshoreWake project (64017-0017/12521)