

Quantification of vapor flux in dune sediments using a precision meteo-lysimeter

Claus Kohfahl¹, Lidia Molano-Leno¹, Maarten Saaltink⁵, Daniel Jesús Martinez Suárez¹, Fernando Ruiz Bermudo¹, Antonio Martínez Sánchez De La Nieta¹, Gonzalo Martínez⁴, Karl Vanderlinden³, Carolina Guardiola¹, Juan Vicente Giráldez²

 ¹Research of Geological Resources, Instituto Geológico y Minero de España, Spain,
²Agronomy, Universidad de Cordoba, Spain, ³Centro Las Torres-Tomejil, Instituto de Investigación y Formación Agraria y Pesquera, Spain,
⁴Applied Physics, Universidad de Cordoba, Spain,
⁵Department of Civil and Environmental Engineering, Universitat Politecnica de Catalunya, UPC, Spain

EGU General Assembly 2019

Soil water infiltration: Measurements, assessment and modeling

Vienna

Tuesday, 09 Apr 2019, 17:15

Claus Kohfahl

Instituto Geológico y Minero de España Unidad de Sevilla

GRO

STUDY SITE

Southwest Spain: Doñana National Park => `protected wetland

Lysimeter site

Almonte-Marismas Aquifer Doñana Natural Park

Doñana National Park

Geography

- > surrounded by 46 villages and towns =>1.5 Mio people
- Agriculture and Tourism

Geology

- ≻ <u>dunes</u>
- beaches
- ➢ marshes

Climate

- Sub-humid Mediterranean with Atlantic influence
- Average rainfall: 500-600 mm
- > Average Temperature: 17-18°C

Ortophoto from Junta de Andalucia webpage: http://www.ign.es/wms-inspire/pnoa-ma

0 Kilometers

2

MATERIAL AND METHODS

Meteo Lysimeter Site Equipment

Weighting Lysimeter (UMS AG, Munich, Germany)

- 1 m² area
- 1.5 m height
- 10 g weighting resolution

Six CS650 soil moisture sensors (Campbell Scientific, Logan UT)

Depths (m)		
0.30	1.60	
0.60	2.20	
1.20	3	

Measured parameter	Time interval (minutes)
Soil mass lysimeter	1
Water mass drained from lysimeter	1
Soil water tension	10
Soil moisture	10
Wind direction	10
Wind velocity	10
Net radiation	10
Precipitation	10
Air humidity	10
Air and soil thermal profile	10
Soil bulk density	Once
Grain size distribution	Once
Mineralogy	Once
Metals content	Once

2 Automatic and Meteorological Stations (Vantage PRO2 Davis, California, USA; UMS AG, Munich, Germany)

Weighing Rain Gauge (OTT pluvio1)

Rain water collector

MATERIAL AND METHODS

METEO LYSIMETER

MATERIAL AND METHODS

✓ Data Noise Filtration: AWAT (*Peters et al. 2014*)

✓Hydrochemistry rain and drained water

✓ Stable isotopes of rain and drained water

Sediment parameters (physical, mineralogical chemical)

RESULTS

Dew and real evaporation

- Upper boundary flux
- Upper boundary flux (noise filtered)
- --- Measured temperature minus dewpoint temperature

- ✓ Dew 0.3-0.5 mm/day
- ✓ Real evaporation 0.4-0.6 mm/day

RESULTS

Soilwater budget 2016/2017 in mm

2016/2017

Prec.lysimeter	644
Prec. pluviometer	566
Ev real	241
Recharge	413
Storage	-9.68 kg

64% recharge \checkmark

- Software: **CODEBRIGHT** (Olivella et al., 1996)
- Solves balance equations for water, air and energy in an unsaturated medium
- One-dimensional vertical homogeneous domain of 1.4 m length, divided into 140 elements of 0.01 m
- Starts at November 25, 2015 and ends at October 4, 2017, which is the period with available meteorological data

Modelling: retention curves

Retention curves used by the models together with suction and VWC (volumetric water content = ϕS_l), measured outside the lysimeter at a depth of 1.40 m. The three retention curves are plotted on an arithmetic (left) and logarithmic scale (right).

Mass of water in the lysimeter

Modelling: Temperature profiles

Modelling

Evolution of vapor diffusion at the boundary

Evolution of vapor diffusion at the boundary

Instituto Geológico y Minero de España

- Explore effect on different meteorological conditions on recharge rates
- Simulate climate change and impact on soil water balance
- Compare simple analytical approaches to calculate real evaporation
- Update the current infrastructure by 3 additional lysimeters equipped with humidity and suction sensor profiles in spring 2019

Funding:

- European Research Funds (SE Scientific Infrastructures and Techniques and Equipment 2013, IGME13-1E-2113).
- Spanish National Plan for Scientific and Technical Research and Innovation: CLIGRO Project (MICINN, CGL2016-77473-C3-1-R).
- National System of Youth Guarantee (MINECO activity with reference PEJ-2014-85121) co-financed under the Youth Employment Operational Program, with financial resources from the Youth Employment Initiative (YEI) and the European Social Fund (ESF).

Technical support:

- A. Peters for providing AWAT filter.
- Biological Station of Doñana, the Biological Reserve of Doñana and the administration of the Doñana National Park.
- Iñaki Vadillo from University of Malaga for isotope analysis.

Relevant Bibliography:

 Peters A, Nehls T, Schonsky H, Wessolek G (2014) Separating precipitation and evapotranspiration from noise - A new filter routine for high-resolution lysimeter data. Hydrology and Earth System Sciences, 18(3): 1189–1198