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Introduction

* “Weather” forecasting of 3d-atmospheric fields

e Using simple general circulation models as
simplified reality

* “Playground” for weather forecasting
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Hierarchy of simple general circulation
models

* PUMA:

- dry dynamical core, only atmosphere, no moisture cycle
- 4 variables on 10 levels

* PLASIM:

— In principle a GCM, but everything except the atmosphere
strongly simplified

- Dynamics of the atmosphere similar to reality (except for
resolution), also “complexity” of the data similar to reanalysis.

* Both computationally cheap —> one can easily generate
100s of years of data
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e PTINCIPDIE Approach
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Result on simplest model
PUMA T21, no seasonal cycle

 Forecast skill:
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* Climate run:
- Stable, no long term drift

Scher (2018)
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Results on more complex models
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GFDL CMIPS5 run: seems to work as well (preliminary result)

“Climate” runs: not stable — problems with seasonal cycle

Scher and Messori (2019)
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Conclusions

* Convolutional neural networks are In principle
able to forecast the “weather” in simple GCMs

* Making “climate” runs with the networks Is
possible with the simplest model, but is tricky
with seasonal cycle

* A network architecture tuned for the simplest
model also worked for more complex models
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