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Introduction

● “Weather” forecasting of 3d-atmospheric fields

● Using simple general circulation models as 
simplified reality

● “Playground” for weather forecasting
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Hierarchy of simple general circulation 
models

● PUMA: 
– dry dynamical core, only atmosphere, no moisture cycle
– 4 variables on 10 levels

● PLASIM: 
– in principle a GCM, but everything except the atmosphere 

strongly simplified
– Dynamics of the atmosphere similar to reality (except for 

resolution), also “complexity” of the data similar to reanalysis.

● Both computationally cheap –> one can easily generate 
100s of years of data
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Principle Approach

Artificial Neural Network with

Convolution layers
(to some extent similar to a “local” 
Approach as in Dueben and Bauer (2018))

Network tuned on simplest model
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Result on simplest model
PUMA T21, no seasonal cycle

● Forecast skill:

● Climate run:
– Stable, no long term drift
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Scher (2018)




 

11.04. 2019

 

7/9
Department of Meteorology (MISU),
Stockholm University

Results on more complex models
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GFDL CMIP5 run: seems to work as well (preliminary result)

“Climate” runs: not stable – problems with seasonal cycle

Scher and Messori (2019)



 

11.04. 2019

 

8/9
Department of Meteorology (MISU),
Stockholm University




 

11.04. 2019

 

9/9
Department of Meteorology (MISU),
Stockholm University

Conclusions

● Convolutional neural networks are in principle 
able to forecast the “weather” in simple GCMs

● Making “climate” runs with the networks is 
possible with the simplest model, but is tricky  
with seasonal cycle

● A network architecture tuned for the simplest 
model also worked for more complex models



 

11.04. 2019

 

10/9
Department of Meteorology (MISU),
Stockholm University

References

●  Scher, S. ( 2018). Toward data driven weather and climate forecasting: 
Approximating a simple general circulation model with deep learning. Geophysical 
Research Letters, 45, 12,616– 12,622. https://doi.org/10.1029/2018GL080704 

● Scher, S. and Messori, G.: Weather and climate forecasting with neural networks: 
using GCMs with different complexity as study-ground, Geosci. Model Dev. Discuss., 
https://doi.org/10.5194/gmd-2019-53, in review, 2019. 

● Dueben, P. D. and Bauer, P.: Challenges and design choices for global weather and 
climate models based on machine learning, Geosci. Model Dev., 11, 3999-4009, 
https://doi.org/10.5194/gmd-11-3999-2018, 2018. 



 

11.04. 2019

 

11/9
Department of Meteorology (MISU),
Stockholm University


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

