Signal, orbit, and clock analysis of GPS III SV01

Knowledge for Tomorrow

Peter Steigenberger, Steffen Thölert, Oliver Montenbruck

Introduction

- New generation of GPS Block III satellites
 - Improved accuracy
 - Civil L1C signal
 - CNAV-2 navigation message
 - 15-year life time
- First launch on 23 December 2018
- Start of signal transmission on 9 January 2019
 - PRN G04
 - Still set unhealthy due to on-orbit testing

The L1C Signal

- Data and pilot component: power ratio 1:3
- PRN code length: 10,230 chips (10 x C/A)
- Binary Offset Carrier BOC(1,1)
- BOC(*n*,*m*)
 - *n*: fundamental frequency of the subcarrier in multiples of 1.023 MHz
 - *m*: chipping rate in multiples of 1.023 megachips per second
- Time-multiplexed BOC (TMBOC) for pilot
 - BOC(1,1)

The L1C Signal

- Data and pilot component: power ratio 1:3
- PRN code length: 10,230 chips (10 x C/A)
- Binary Offset Carrier BOC(1,1)
- BOC(*n*,*m*)
 - *n*: fundamental frequency of the subcarrier in multiples of 1.023 MHz
 - *m*: chipping rate in multiples of 1.023 megachips per second
- Time-multiplexed BOC (TMBOC) for pilot
 - BOC(1,1)
 - BOC(6,1) improved multipath mitigation

Frequency [MHz]

The L1C Signal

- Data and pilot component: power ratio 1:3
- PRN code length: 10,230 chips (10 x C/A)
- Binary Offset Carrier BOC(1,1)
- BOC(*n*,*m*)
 - *n*: fundamental frequency of the subcarrier in multiples of 1.023 MHz
 - *m*: chipping rate in multiples of 1.023 megachips per second
- Time-multiplexed BOC (TMBOC) for pilot
 - BOC(1,1)
 - BOC(6,1) improved multipath mitigation

Chart 6

Measured L1 Spectrum

• 30 m high-gain antenna at Weilheim, Germany

Receiver Tracking: Carrier-to-Noise Density Ratio

Receiver Tracking: Code Noise and Multipath

• Multipath combination

$$MP(p_i, \varphi_i, \varphi_j) = p_i - \varphi_i - 2\frac{f_j^2}{f_i^2 - f_j^2} \left(\varphi_i - \varphi_j\right)$$

- p_i pseudorange observations φ_i, φ_j carrier phase observations i, j frequency index: i, j = 1, 2, 5
- RMS in 5 deg elevation bins
- Javad TRE_3 receiver at Potsdam, Germany (POTS00DEU)

Triple-Frequency Carrier Phase Linear Combination

- Ionosphere- and geometry-free linear combination of L1 C/A, L2 P(Y) and L5 I/Q phase observations
- Station-specific bias removed
- Difference of L1/L2 and L1/L5 clocks: Interfrequency clock bias (IFCB)
- Orbit-periodic IFCB variations for Block IIF up to 20 cm

Montenbruck O., Hugentobler U., Dach R., Steigenberger P., Hauschild, A. (2012). Apparent clock variations of the Block IIF-1 (SVN62) GPS satellite. GPS Solutions 16(3), 303–313. DOI 1007/s10291-011-0232-x

Satellite Clock Performance

One-way Carrier Phase Analysis Tidbinbilla, Australia

Global GNSS Solution

3-day orbit arc, 5 min clock estimation

Orbit Quality

ECOM-2, estimated direct solar radiation pressure

- 40 % less observations of GPS III compared to other GPS satellites
- Lower ambiguity fixing rate

Satellite Antenna Offsets

- Public release of manufacturer calibrations
- Adopted for igs14.atx
- Phase center variations from ESA/CODE

					LOCK	HEED MARTIN
Januar	y 2019					
To Who	om it May Conc	ern –				
The fol	lowing informa	tion has been det	ermined to be (unclassified, n	ion-proprietar	y to Lockheed Martin,
and pu	blicly releasable	2:				
1)	and L5 signals	table presents the for the Earth Cov Space Vehicle ce	erage (EC) ante			er offsets of the L1, L2 measured with
			X (inches)	Y (inches)	Z (inches)]
		L1 freq	0.149	-0.712	48.521	
		L2 freq	0.122	-0.638	29.152	1

Ionosphere-free L1/L2 z-offset estimates

Summary and Outlook

- GPS III SV01 tracked by many IGS stations, very few stations providing L1C (Javad from GFZ, BKG)
- Improved noise and multipath characteristics of L1C compared to L1 C/A
- No inter-frequency clock bias variations present
- Slightly improved clock performance compared to Block IIF
- Currently slightly worse orbit quality
- Satellite metadata:
 - Antenna phase center offsets and inter-signal corrections published
 - Transmit antenna gain pattern needed for transmit power estimation
 - Dimensions, optical properties and mass needed for advanced solar pressure modeling

- Second GPS III launch planned for 25 July 2019
- Another 8 GPS III satellites in production
- GPS III Follow On (GPS IIIF, SV11 SV32)

