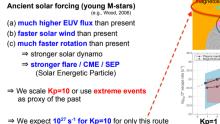

Lagrange L2 Mission: for magnetospheric and planetary evolution studies

Masatoshi Yamauchi[1], Johan De Keyser[1], Iannis Dandouras[3], Esa Kallio [4], and FATE proposal team


Swedish Institute of Space Physics, Kiruna, Sweden,
 Royal Belgian Institute for Space Aeronomy, Brussels, Belgium,
 Institut de Recherche en Astrophysique et Planétologie,
 Université de Toulouse/CNRS/CNES, Toulouse, France,
 Aalto University, Helsinki, Finland.

poster X4.181 (PS5.2, EGU2019-8862)

Atmospheric escape is large enough to affect the Evolution of the Life in geological scale

Scaling to the past : high EUV + P_{sw}

⇒ 3.1043 O⁺ over **1 Gyr** (3.1016 sec)

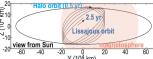
= 70% of present atmospheric O₂ (15% of N₂)

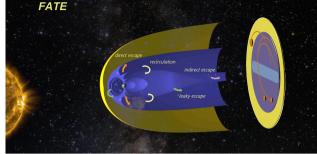
cf. Observed O/N ratio fluctuate in 0.1 byr not easy to explain by bioactivity

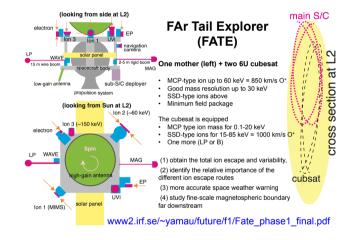
the transformation of the second sec

⇒ ion escape cannot be ignored

⇒ ion escape might be important


Escapes mechanisms


mechanism	explanation	Where?
Jeans escape	Thermal tail exceeds the escape velocity	exobase (M, ancient E?)
Hydrodynamic blow offor	Massive escape when thermal energy	near exobase (ancient)
0	exceeds escape energy	
Momentum exchange	Light neutrals collide with heavy molecules	above exobase (M, ancient E/V?)
Photochemical energization	Recombination etc. supply the escape energy	exosphere (M, ancient)
Charge-exchange	Trapped ion with escape velocity strives an electron from neutral	above mirror altitude (E)
Atmospheric sputtering	Precipitating heavy ions (pickup or trapped ones) impact the atmosphere	around and above exobase (M, V>E)
Ion pickup	Cold ions that are newly exposed to solar wind are removed by the solar wind ExB	outer exosphere (M>V, ancient E?)
lons accelerated by field reach SW	E _{//} acceleration (DC field) and wave- particle interactions (AC field).	ionosphere & magnetosphere (E>M>V?)
Large-scale momentum transfer & instabilities	Solar wind P _{Dynamic} and EM forces push the planetary plasma anti-sunward.	magnetospheric boundary and tail (E>M, V)
Magnetopause shadowing (ions)	The drifting ions overshoot the magnetospheric boundary.	inner magnetosphere (E)
Plasmaspheric wind and plumes	Detachment or expansion of cold plasma by instability or pressure	plasmasphere (E) 4


Main escape mechanism for the Earth

mechanism	present Earth	ancient Earth?
Jeans escape	- ഗ	yes? (need to understand present exosphere)
Hydrodynamic blow off	- 2	yes? (need to understand present exosphere)
Momentum exchange	- 78	yes? (need to understand present exosphere)
Photochemical energization		yes
Charge-exchange	yes 😤	? (need to understand ring current)
Atmospheric sputtering	- 2	yes? (need to understand past cusp)
Ion pickup	- 5	yes
lons accelerated by field reach SW	YES! 📮	yes
Large-scale momentum transfer & instabilities	yes S	yes? (need to understand past magnetosphere)
Magnetopause shadowing (ions)	yes . <mark>2</mark>	yes? (need to understand past ring current)
Plasmaspheric wind and plumes	yes	yes? (need to understand past plasmasphere)
Ion mission is fine ⇒ can be downstream To understand both ion and neutral, low perigee elliptic orbit is needed ⇒ ESCAP		

cube-FATE

One 6U-12U cubesat

- MCP (Micro-channel plate) type ion mass for 0.1-20 keV
- SSD (Solid state detector) type ions for 15-85 keV
- (cover up to 1000 km/s O+
- One more (SEP monitor or LP or B)

It is possible to accommodate electric propulsion in 6U cube and send to L2!

Cost ~ order of 10 Meur

