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Qualitative and quantative approach

Objectives

The present study aims at understanding
the potential of a new and novel type of
geothermal system for electricity production
. the Crustal Fautl Zone (CFZ).

According to geological and geophysical
data, the Pontgibaud fault zone (French
Massif Central) is suspected to host an
active hydrothermal system at a depth of
few kilometers. However, the generation of
a geothermal resource in a fault zone likely
depends on its geometry , on its permeabi-
ity and on the local thermal regime.

eHow fluids circulate within a fault
zone ?

eHow geometry and permeability in-
fluence the intensity and depth of the
thermal anomaly ?

Take home message(s)

First observations have shown that:

ePontgibaud hydrothermal system
is a dual permeability matrix-fracture
reservolr.

The results of the parametric study, com-
pared to the natural Pontgibaud system,
show that:

e Vertical structure provides the lar-
gest thermal anomaly at the shal-
lowest depth.

e The depth of positive thermal ano-
maly Is shallow for high permeability
contrasts

Finally, we were able to observe that for a
permeability value of 8 x 101> m? the fluid
circulation belongs to the bicellular
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strong convection zone type.
For these values the isotherm 150°C is at a

depth of 2.5 km.

Choice of permeability distribution

Parametric study

Temperature anomalies in the Pontgibaud Fault Zone
Overlap of the resistiviby
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Application to the Pontgibaud Fault Zone
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Connected porosity (%) 1- First graphic represents the thermal anomalies AT (°C). In order to account for both the permeability of the fault Angle a ()
and of the basement rock we consider the R ratio. The angle corresponds to the dip of the fault zone. For a fixed |
R ratio (e.g R =200) the highest thermal anomaly value will be for a vertical fault zone. For a fixed dip 3. Numerical models of crustal scale were performed ub to the fime of t_ + 15.000 vrs
2D (Thin section) and 3D (micro-tomography X-ray) observation of sample taken from "Peyrouses" 1 borehole show that (e.g 60°, when R ratio is high, the thermal anomaly will be its a maximum at a shallower depth. The following figure represents the tempzrature andptemperature a(r)lomal,y of I’Ihé
fluids can circulate along the fracture and within the matrix in the fault zone. 2- Second graphic characterise thermal anomaly processes and their origin. The temperature anomalies (AT) and Pontgibaud fault zone for different permeability and therefore different R ratio. In com-
The connected porositly and permeability measurements were performed on seven samples (according to Heap & the fault angle are represented as a function of the different R ratio. All temperature anomalies are related to the pre- parison with the field data, we can see that for a permeability value of 8 x 10-'® m2 we
Kennedy, 2016). The measured permeability values varied between 2 x 10-'® and 7 x 10-"* m? while the connected poro- sence of convection cells. According to R ratio, three domain are distinguised. The unicelluar weak type (blue), fnd 39°C/km and 110 mINIm'2 This permeability value is a ratio R = 157 and shows
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sity values varied between 6 and 22%. the unicellular mediam type (orange) and the bicellular strong type convection zone (red). Depending on that the convective regime belongs to the bicellular strong type. — )

the permeability values there can be two types of convection within the Pontgibaud fault zone.
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