Terrestrial ion behavior in space

Swedish Institute of Space Physics (IRF), Kiruna

Photography encouraged

M. Yamauchi Kiruna, Sweden

I dedicate this talk to

Prof. Emer. Bengt Hultqvist (1927-2019)

First recipient of Julius Bartels Medal (1996)

Full of ionospheric ions in space (1970's)

Outline

1. Three types of outflow and primary destinations: cold (re-filling, supersonic), superthermal, & hot

2. Ions that are not directly escaping: Inner Magnetosphere as a zoo of ions

- time-variable multiple sources
- time-variable E-field
- local energization
- expected/unexpected mass-dependency

3. Consequence of **ion escape** (under-estimated effects):

- local energy conversion through mass-loading
- Evolution of the Earth in geological scale (then cannot ignore neutral)

Sorry no time for

- 4. Other active roles of planetary ions: Martian bow shock, various SW injection
- 5. Ions in the neutral atmosphere: Unique method to monitor ionizing radiation

Destinations of outflowing ions

Destinations of outflowing ions

M. Yamauchi Kiruna, Sweden

Destinations of cold, superthemal, hot ions

Advantage of Cluster

(1b) Supersonic flow of cold H⁺ (& some He⁺)

Massive flow (cold H+ ~ 10^{26} s⁻¹) to the plasma sheet (cold dense component) \neq plasmasphere

(2) Superthermal H⁺ & O⁺

They are observed only at low altitude (Freja, FAST, Akebono) ⇒ further accelerated to become (3) hot

outflow from the cusp IMF By ~ -60 nT Injection from southern cusp

(3) Hot H⁺ & O⁺

Fate of ions in the magnetotail

M. Yamauchi Kiruna, Sweden

Outline

1. **Three types of outflow** and primary destinations: cold (re-filling, supersonic), superthermal, & hot

2. Ions that are not directly escaping: Inner Magnetosphere as a zoo of ions

- time-variable multiple sources
- time-variable E-field
- local energization
- expected/unexpected mass-dependency
- 3. Consequence of **ion escape** (under-estimated effects):
- local energy conversion through mass-loading
- Evolution of the Earth in geological scale (then cannot ignore neutral)

Ion drift under strong B-field

Magnetic drift (energy-dependent) * gradient-B & curvature drift ⇒ dominant for > 10 keV

ExB drift (energy-independent)
* co-rotation & external E-field
⇒ dominant for < 0.1 keV</pre>

Both drifts are **mass-independent** for given energy ⇒ H⁺, He⁺, & O⁺ should drift together

25

M. Yamauchi Kiruna, Sweden

Reality: three basic populations 5 LT CIS/CODIF (SC-4), 2004-12-22 6.7 [keV] = accelerated plasma 5.0 H+ sheet (westward drift) 3.3 plasma sheet -60° ILAT 73° ZCCC -0.6 (eastward ExB drift) 3 hours 3 CIS/CODIF (SC-4), 2002-1-22 6.7 sub-keV stripes (??? 5.0 3.3 60[°] ZGSE 3.3 -0.40LCIS/CODIF (SC-4), 2002-3-06 6.7 [keV] = 5.0 H+ luster orbi 3.3 0.1 . -61° **ILAT** -73° 69° Z_{GSE} -4.1 -0.4 3.4 Highly elliptic orbit \Rightarrow traverses inner magnetosphere quickly M. Yamauchi

Three basic populations

accelerated plasma sheet (westward drift) plasma sheet (eastward ExB drift)

superthermal (<50 eV) intermittent supply

Simulated ion distribution at Cluster location , 2004-

Simulation

(Yamauchi et al.,2009)

Can ExB drift really explain?

(1) Afternoon sector ⇒ Yes
(2) Sudden appearance in 2 hours ⇒ Yes

In fact, source locations are sometimes different between H⁺ & He⁺

Well, real game is not that simple

Other O⁺ source during substorm?

(multiple onset, AE= 365nT@23:10)

Different H⁺ arrival time to 9 MLT & E =1-3 mV/m (V_E = 3~10 km/s)

M. Yamauchi Kiruna, Sweden

Derived ion motion

H⁺ timing analyses ⇒ H+ dispersion started 6~7 MLT at ~ 23:10 UT

O⁺ signature ⇒ 20-30 min from northern ionosphere along B

⇒ O⁺ outflow started near 9 MLT at ~23:20 UT

Both agree with substorm onset at 23:10 UT

(Yamauchi et al., 2006)

Other example of propagation

WIC 2003-10/29 06:11:37 UT

Shock swept the inner magnetosphere (0.3 R_E/s) ACE: 0558:20 UT / +221 R_E GTL: 0609:40 UT / +26 R_E Wind: 0619:30 UT / -156 R_E ground B: 0611:20 UT \Rightarrow arrival at MP: ~ 06:10 UT

Dipolarization + substorm onset ~ 06:12 UT ⇒ Unlike previous case, the sweeped shock triggered this particular substorm onset (Yamauchi et al., 2006)

Raw

SSL-UCB

Mystery-3: Energization

Local *L* heating in the plasmasphere

Viking observations

After high AE activities.

(1) Moves eastward very fast

⇒ fossil of substorm filling

(2) Quick decrease for 12-18 MLT

(Yamauchi and Lundin, 2006)

Viking observation frequency

Why decay? (1) loss to the ionosphere

(i) O⁺ < 1 keV: mainly Charge exchange during mirroring (high n_n) \Rightarrow half will be lost

(ii) O⁺ > 1 keV: mainly Strong pitch-angle diffusion to loss cone
⇒ real return

Why decay? (2) Magnetopause shadowing

ExB drift overshoots magnetopause \Rightarrow magnetopause (MP) shadowing $\approx 1/3$ of input O⁺ during storm

(Zong et al., 2001)

⇒ works for all drifting ions (cold + hot + energetic)

note: Largest at mid-latitude rather than equator (because of bouncing motion)

Ion evacuation by substorm E-field

IRF

Outline

1. Three types of outflow and primary destinations: cold (re-filling, supersonic), superthermal, & hot

- 2. Ions that are not directly escaping: Inner Magnetosphere as a zoo of ions
- time-variable multiple sources
- time-variable E-field
- local energization
- expected/unexpected mass-dependency

3. Consequence of massive ion escape (under-estimated effects):

- local energy conversion through mass-loading
- Evolution of the Earth in geological scale (then cannot ignore neutral)

Main escape mechanisms for present Earth

Known escape rate with Cluster

 (a) polar outflow of hot O⁺ (x 10²⁵ s⁻¹) magnetosheath O⁺ (escape) ~ 0.7 plasma mantle O⁺ (mostly escape) ~ 2

(Nilsson et al. 2012, Slapak et al., 2017a)

(b) magnetotail hot O⁺ (x 10^{25} s⁻¹) tailward O⁺ (escape) ~ 0.5 earthward O⁺ ~ 0.6 \Rightarrow roughly half escapes later (Slapak et al., 2017b)

(c) plasma sheet cold H⁺ (x 10^{25} s⁻¹, with O/H ratio < 10^{-2} ?) 3 ~ 10 (for H⁺) \Rightarrow more than half escapes

(Eriksson et al. 2006, Engwall et al., 2009)

(d) plasmaspheric cold H⁺ and He⁺ (x 10²⁵ s⁻¹, with O/H ratio ~ 3%)
 Plume : peak 100 (for H⁺)
 Wind : up to 50 (for H⁺)
 (Darrouzet et al. 2009, 2013)

Outline

1. Three types of outflow and primary destinations: cold (re-filling, supersonic), superthermal, & hot

- 2. Ions that are not directly escaping: Inner Magnetosphere as a zoo of ions
- time-variable multiple sources
- time-variable E-field
- local energization
- expected/unexpected mass-dependency

3. Consequence of massive ion escape (under-estimated effects):

- local energy conversion through mass-loading
- Evolution of the Earth in geological scale (then cannot ignore neutral)

O⁺ inside solar wind = Mass Loading

Mass loading = inelastic mixing conserving momentum ⇒ kinetic energy K is not conserved

 $(\Delta K/K = \Delta u/u = deceleration rate)$

example 1: comets and Mars (loading of pickup ions)

example 2: cusp & plasma mantle (mixing of escaping O⁺)

In fact Cluster obs. indicates Mass Loading

 V_{O+} increases while V_{H+} decreases

⇒ Mixing is indeed inelastic toward the common velocity

$$\Rightarrow \Delta K/K = \Delta u/u$$

(K=kinetic energy)

In fact Cluster obs. indicates Mass Loading

MHD dynamo during deceleration

Where does $\Delta \mathbf{K}$ (kinetic energy) go?

= lonosphere! Because, connected by geomagnetic field (same mechanism as "open" magnetosphere)

⇒ Two type of "open":

- looking from the Earth (Dungy type), and
- looking from the solar wind (Vasyliunas type)

Energy conversion by Mass Loading

If final $V_{O+} \approx V_{H+}$, ΔK is independent of ionospheric conductivity:

 $\Delta \mathbf{K} \approx (-1/4) \cdot \mathbf{u}^2_{SW} \cdot \mathbf{F}_{load}$ (where **F** is O⁺ mixing rate to the solar wind)

(Yamauchi and Slapak, 2018)

 (1) ∆K ≈ 10⁹⁻¹⁰ W for F_{load} ≈ m_O*10²⁵⁻²⁶ s⁻¹
 ⇒ Can explain cusp current system (amount + independency)

(2) We expect $F_{load} \propto \Delta K$ (through ionospheric heating)

⇒ Large u_{SW} increases O+ escape? ⇒

YES

(3) O+ outflow influence the SW injection?

⇒ Various types of injection? (not all are understood)

Outline

1. Three types of outflow and primary destinations: cold (re-filling, supersonic), superthermal, & hot

- 2. Ions that are not directly escaping: Inner Magnetosphere as a zoo of ions
- time-variable multiple sources
- time-variable E-field
- local energization
- expected/unexpected mass-dependency

3. Consequence of **massive ion escape** (under-estimated effects):

- local energy conversion through mass-loading
- Evolution of the Earth in geological scale (then cannot ignore neutral)

Scaling to the past : high EUV + P_{sw}

Ancient solar forcing (young M-stars)

- (a) **much higher EUV flux** than present
- (b) faster solar wind than present
- (c) much faster rotation than present
 - ⇒ stronger solar dynamo
 - ⇒ stronger flare / CME / SEP (Solar Energetic Particle)

(e.g., Wood, 2006)

⇒ We scale Kp=10 or use extreme events as proxy of the past

Cluster Statistics of strong SW & EUV in the past

For **direct escape only** (O⁺ mixing into the solar wind), we expect **10**²⁷ **s**⁻¹ **for Kp=10**

We examined also with coupling function (Shillings et al., 2019)

⇒ 10^{27} s⁻¹ x **1 Gyr** (3·10¹⁶ sec) = 3·10⁴³ = **70% of present atmospheric O**₂ (15% of N₂)

⇒ cannot ignore

A few % change in O/N ratio does affect bacteria activity (e.g., Loesche, 1969)

Past escape ⇒ must know neutrals

Ancient solar forcing (young M-stars) (a) much higher EUV flux than present ⇒ thermosphere **expands** ⇒ neutral escape becomes large Magnto cusp **Exosphere** (no collision) Thermosphere (collisional) Earth boundary = "exobase"

for N₂ atmosphere (Tian et al., 2008)

height	500 km	2000 km	10000 km	
veloicity	10.8 km/s	9.8 km/s	7.0 km/s	
0	9.7 eV	8.0 eV	4.1 eV	
Ν	8.5 eV	7.0 eV	3.6 eV	

before		after	extra energy
O ₂ ⁺ + e-	⇒	20	1–7 eV
N ₂ ⁺ + e-	⇒	2N	3–6 eV

In fact, exosphere drastically responds to EUV

atmospheric escape from ancient Earth

mechanism	present Earth	ancient Earth?	
Jeans escape	-	yes? (need to understand present exosphere)	
Hydrodynamic blow off	- <mark>e</mark>	yes? (need to understand present exosphere)	
Momentum exchange	- eut	yes? (need to understand present exosphere)	
Photochemical energization	- č -	yes	
Charge-exchange	yes	? (need to understand ring current)	
Atmospheric sputtering	- 6	yes? (need to understand past cusp)	
lon pickup	- oth	yes	
lons accelerated by field reach SW	YES!	yes	
Large-scale momentum transfer & instabilities	yes <mark>o</mark>	yes? (need to understand past magnetosphere)	
Magnetopause shadowing (ions)	yes . <mark></mark>	yes? (need to understand past ring current)	
Plasmaspheric wind and plumes	yes	yes? (need to understand past plasmasphere)	

Summary

Terrestrial ion behavior has inter-disciplinary aspect on

- Substorms
- Solar wind injection and energy conversion
- Magnetospheric dynamics
- Ionospheric physics
- Ion-neutral interaction
- Space weather
- Evolution of atmosphere and biosphere

and

Radioactive hazard

After Fukushima accident, we retrieved motion of radionuclide that ionizes molecules

Summary

- Out of three type of outflow (cold filling, cold supersonic outflow, hot outflow), hot O⁺ alone cause >10 ²⁵⁻²⁶ s⁻¹ mainly though direct entry into the solar wind in the polar region.
- Inner Magnetosphere is a **zoo of "un-understood" ions**.
- Terrestrial (planetary) ions plays active roles in the solar wind interaction with the magnetosphere (extra "open" hole in the open magnetosphere).
- Ion escape influences evolution of the Earth in geological scale
 ⇒ We still need missions to study "escape" (Friday morning).
- Knowledge of ion dynamics even allows monitoring radioactive materials

Thank you

