

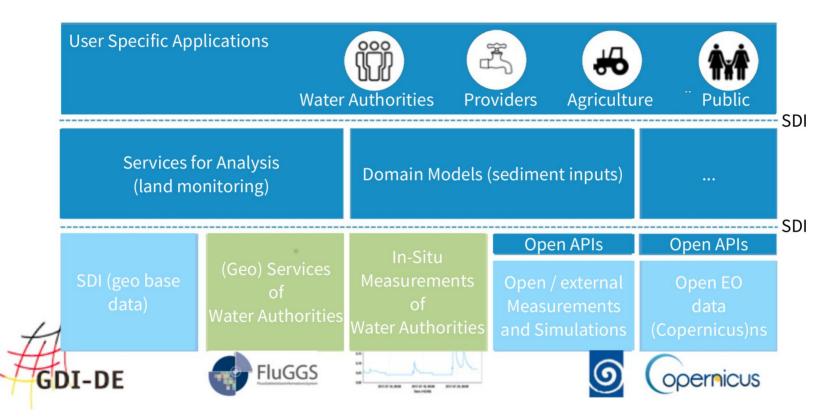
Federal Ministry of Transport and Digital Infrastructure

Automated Creation of Earth Observation Products for Water Resource

Matthes Rieke

Photo by Ralph Schneider (CC BY-SA 2.0

MOTIVATION


Water management bodies are challenged by increased input of sediments and other materials in watercourses and dams due to ...

- intensified agriculture
- increased number of extreme weather conditions (in particular alternating heavy rain, drought) due to climate change
- Measures to **reduce material & pollutant inputs** require identification of pollution origins

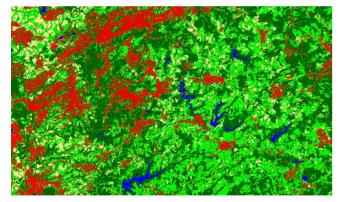
 provide an information infrastructure to identify relevant spots and enable individual consulting of farmers

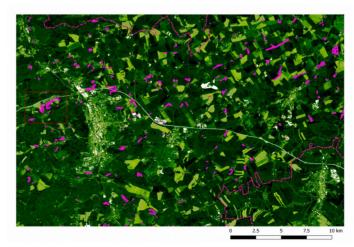
CONCEPTUAL OVERVIEW

52

PROJECT OVERVIEW

- Wupper region in North-Rhine Westfalia, Germany
- Wupperverband is the responsible water authority
 - Operation of river dams, clarification plants
 - Water network monitoring (gauges, temperature, precipitation)





PRODUCTS FROM EARTH OBSERVATION

- Overall goal: Increasing the efficiency of environmental monitoring by combining various geo- and sensor data and model components for
 - Structure of a dynamic land register (vitality of the vegetation, actual crop rotations, types of sealing and use etc.)
 - Optimized modeling of **inputs in rivers and reservoirs**
 - Quantification and localization of **sediment and pollutant inputs**

Detailed land use classification

Change of water-land borders

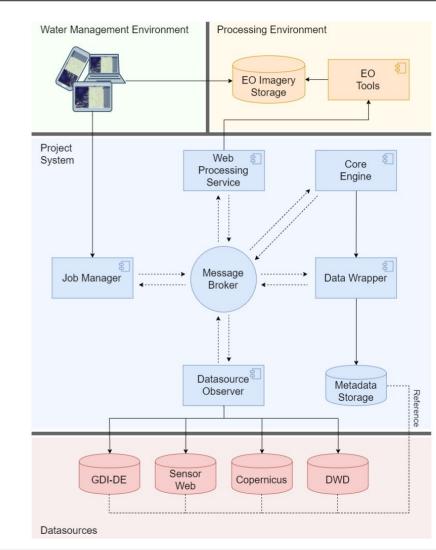
Intra-annual monitoring of agriculture

PRODUCTS FROM EARTH OBSERVATION

Group	Product
Land use classification	- Differentiation of sealed and unsealed surfaces
	- Detailed classification of land use
	- Intra-annual change analysis of land cover / use
Monitoring of vegetation	- Determination of the vegetation density
	- Intra-annual monitoring of grassland and field grasslands
	- Determination of forest damage / vitality caused by pests
	- Analysis of vitality changes of woodlots
Water vegetation monitoring	 Detection of Macrophyte Hotspots (in shallow waters)
	- Identification of vegetation structures in rivers
Water network monitoring	- Observing the change of water-land borders
	- Monitoring the water level of reservoirs
Damage monitoring	- Determination of forest damage (wind break, snow break) after storms

DESIGN APPROACH

- **Problem:** EO data to be used for processing must fulfill certain requirements
 - Minimal cloud coverage
 - High percentage of spatial overlap
 - Available as "time series" (e.g for training or intra-annual monitoring)
- Approach: Offering EO products "on availability"
 - Integration of models for sediment and pollutant inputs into river systems and dams
 - Information processing as soon as required data becomes available
 → event-driven processing of EO data, in-situ measurements etc.
 - Re-use of existing EO processing tools
 - Remote use of proprietary services
 - Deployment in "Copernicus Cloud Environments" (e.g. DIAS platforms, national infrastructures such as CODE-DE)

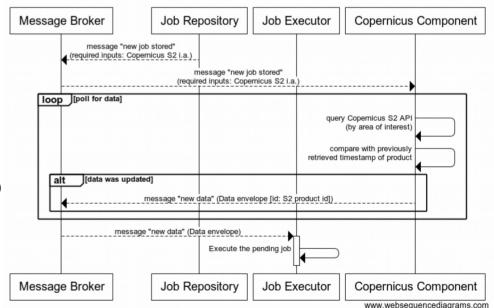


HTTPS://52NORTH.ORG

SYSTEM ARCHITECTURE

- Publish/Subscribe architecture
 - Start a process when new data is available
- Dedicated components **observe the data centres**
 - Sensor Web, Copernicus Open Access Hub, DWD
- Two-layered approach
 - Integrate legacy EO tools via WPS
 - Use state of the art processing
 - based on Spark, Geotrellis
 - Assess **Machine Learning** algorithms
 - for specific tasks (e.g. land classification)

APPROACHING INTEROPERABILITY


- OGC Web Processing Service 2.0
 - Standardized interface for synchronous and asynchronous **processing jobs**
 - Allows the definition of **inputs** and **outputs**, and processing **parameters** (e.g. output resolution)
- WPS is used for
 - Wrapping of already existing EO processing tools
 - Execution environment for newly developed tools
- Standardized interface allows the lightweight introduction of additional tools → flexible and **extensible architecture** with broad processing capabilities

EVENT-DRIVEN WORKFLOWS

- The system is designed to **observe data centres** (Sentinel Hub, Sensor Web of Wupperverband, ...)
 - Configurable observation cycles (e.g. every hour)
- Data of interest is identified
 - Metadata (by a specific domain data model) is published on the internal Message Broker
 - Interested components (e.g. the Job Execution) catch up
 - Achieves automatic execution

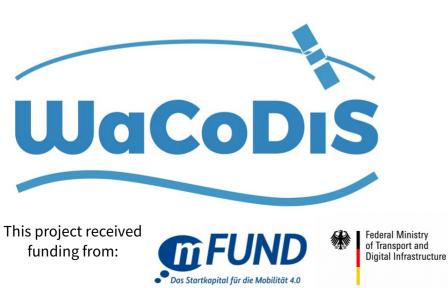
WaCoDiS	Search or jump to	Pull requests Issues Marketplace Explore
		WaCoDiS Wasserwirtschaftliche Copernicus-Dienste zur Bestimmung von Stoffeinträgen in Gewässer und Talsperren im Rahmen des Umweltmonitorings Trepositories People Teams Projects Settings
		Find a repository Type: All - Customize pinned repositories
		config-server Top languages centralized configuration server for WaCoDiS components. java Shell Python
		core-engine > • Java Updated 22 days ago
		datasource-observer Invite someone Java Updated on Dec 6, 2018
		data-access-api WaCoDiS Data Access Java Updated on Nov 27, 2018
		job-definition-api The WaCoDIS job repository service
		javaps-wacodis-backend javaPS backend for WaCoDiS processing tools ● Java 🕅 I In Apache-2.0 Updated on Sep 24, 2018

EGU General Assembly 2019, Vienna – ESSI1.16 Session, 2019-04-09

52r

OUTLOOK

- Implementation of first prototype planned for mid 2019
 - Components ready (as seen in the architecture overview)
 - Integration of one EO tool (for intra-annual land use classification)
- Feedback round with special departments of Wupperverband
- Product storage
 - As-is storage (e.g. GeoTIFFs) vs. Raster-optimized services (e.g. WCS)
- Development of a system dashboard
 - When did an EO tool execute? Where was the product stored?
 - Management of Jobs
- Investigation on the deployment options
 - DIAS (e.g. Mundi Web Services, Sobloo, WEkEO, ...)
 - CODE-DE
 - Distributed components (e.g. WPS and tools running remotely)


52north exploring horizons

September 2–4, 2019 Münster, Germany

Geospatial Sensing Conference 2019

Thanks for your attention! m.rieke@52north.org

Matthes Rieke

Deadline extended!

Geospatial Sensing – from sensing to understanding our world

Submission Deadline: April 28th https://52north.org/conference