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AS5.1/NH1.18/SM5.3 Hydroacoustic signals recorded at IMS stations 
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H10N/H10S 

H04S 

November 15th event 

December 1st event 

 Signal of unknown origin detected on 
November 15th  2017 in the vicinity of 
the last known position of the lost 
Argentine submarine ARA San Juan. 

 Controlled explosion test conducted by 
Argentine Navy on December 1st  2017, 
with source position and time 
information. 

 The November 15th signal and the 
December 1st test source were both 
detected on CTBT IMS hydrophone 
stations HA10 and HA04. 
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ARA San Juan”, EGU2018-18559 PICO presentation 
European Geosciences Union General Assembly, 
Vienna, Austria, 2018 

Introduction 

Focus on H04S data 

Modelling and ice 

Comparison and ice 

Precursor 

EGU2019-9253 

Observation and 

interpretation of 

ocean waveguide 

impact ……. 

Title 

Conclusions 



AS5.1/NH1.18/SM5.3 Time series recorded from both events 
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H10N H10S H04S  Time series for both 
the November  15th 
event (top row) and 
the December 1st 
calibration signal 
(bottom row). 

 

 Recorded time series 
on H10N and H10S 
indicate an impulse-
like event. 

 

 The arrival times of the 
signals on H10N, H10S 
and H04S make it 
possible to associate 
the recordings to the 
same event. 
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AS5.1/NH1.18/SM5.3 Calibrated spectrograms of both signals 
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H10N H10S H04S 

 Calibrated 
spectrograms 
indicate broadband 
signals arriving on 
H10N and H10S. 

 

 Attenuation of the 
higher frequency 
components of the 
signal recorded on 
H04S is evident. 

 

 Stronger propagation 
channel dispersion is 
observed on H04S. 
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AS5.1/NH1.18/SM5.3 Hydroacoustic signals recorded at IMS stations 
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 Focus on November 15th 
signal received on H04S. 

 

 Explain the difference in 
the arrivals recorded on 
H10N and H04S through 
modelling of underwater 
acoustic propagation. 
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AS5.1/NH1.18/SM5.3 Time series recorded on H04S from the November 15th event 
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November 15th event recorded on H04S 
 

 Recorded time series 
on H04S. 

 

 Low-pass filtering and 
time dispersed 
compared to the H10N 
signal. 

 

 Precursor visible in the 
spectrogram before 
the main arrival. 

 

      

Precursor (Path 2) 

Main arrival (Path 1) 

Introduction 

Focus on H04S data 

Modelling and ice 

Comparison and ice 

Precursor 

EGU2019-9253 

Observation and 

interpretation of 

ocean waveguide 

impact ……. 

Title 

Conclusions 



AS5.1/NH1.18/SM5.3 Possible precursor signal at H04S  
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Path 2: Azimuth 207.8 
Possible precursor 

Path 1: Azimuth 223.6 
Main Arrival 

 A signal (Path 2) arrived at H04S before the 
main November 15th arrival (Path 1). 

 The main arrival is from the direct geodesic 
line-of sight between the estimated 
November 15th source location and H04S. 

 Observed azimuth of the main arrival         
Path 1: 223.6°. 

 Possible early arrival with more southern 
direction of arrival, pointing to the seasonal 
Antarctic ice-sheet. 

 Observed azimuth of the early arrival 
Path 2: 207.8°. 

 Observed time difference Path 1-2: 1234 s. 

 Subsequent analysis to: 
 Hypothesize on low-pass filtering and time 

dispersion of the main arrival at H04S. 

 Verify if the early arrival could be a precursor of 
the main arrival.  

*) Cansi, Y., An automatic seismic event processing for detection and location: the PMCC method, Geophys. Res. Lett., 22, 1021-1024, 1995. 
**) Cansi Y. and Y. Klinger, An automated data processing method for mini-arrays, CSEM/EMSC European-Mediterranean Seismological 
Centre, NewsLetter 11, 1021-1024, 1997. 

Multi Channel Correlation 
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AS5.1/NH1.18/SM5.3 Comparison of precursor and main signals at H04S  
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Path 1: Azimuth 223.6 
Main arrival 

Path 2: Azimuth 207.8 
Arrival 1234 sec before main arrival  

 Main arrival: Path 1. 

 Possible precursor: Path 2. 

 Similarities in spectrograms: 
 Similarities in locations of main spectral 

peaks. 

 Similarities in spectral roll-off. 

 The Path 2 precursor has lower 
signal-to-noise ratio and higher 
frequency components less visible 
than for the main arrival. 

 No auto-correlation or cepstral peak 
delay found in the Path 2 precursor 
comparable to the main arrival.  

 

 Subsequenct analysis: 
 Impact of possible under-ice signal 

propagation on recordings (main arrival 
along Path 1). 

 Hypothesis for possible precursor signals 
propagating in the ice (precursor along 
Path 2). 
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AS5.1/NH1.18/SM5.3 Signal propagation through and under Antarctic ice-sheet 
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H04S 

Nov 15th event 

H10N H04S 

 The Geodesic propagation path (Path 1) 
from the November 15th  event to H04S 
(>7700 km): 
 Crosses ridges between islands. 

 Intersects the seasonal Antarctic ice-sheet (green 
line) in two points. 

 Seasonal Antarctic ice-sheet for November 
15th, 2017, from U.S. National Ice Center / 
Naval Ice Center. 
[http://www.natice.noaa.gov/products/daily_products.html] 

 H04S main arrival exhibits more dispersion 
and lower signal-to-noise ratio at higher 
frequencies than the main arrival at H10N. 

 These differences can be compatible with a 
strong loss mechanism in the waveguide, 
such as coupling of the acoustic signal to an 
ice-sheet.  
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AS5.1/NH1.18/SM5.3 Impact of ice-cover on underwater acoustic propagation 

 How can so diverse recorded signals originate from the same source? 
 Detailed analysis of the underwater acoustic propagation path from the 

estimated November 15th event location to H04S. 
 Numerical calculation of propagation characteristics from the November 15th 

event location to H04S including high-resolution oceanographic database 
information (sound speed*) and bathymetry**)). 

 Determine properties of an effective fluid ice-cover based on published elastic 
parameters of ice-sheets***). 

 Modify the RAM Parabolic Equation underwater acoustic propagation model 
to include a partly covered sea surface by an ice-sheet with effective fluid 
properties (this modified RAM version is here referred to as SCATRAM). 

 Full time-series modelling demonstrating the impact of the oceanographic 
conditions and ice-cover on the simulated acoustic propagation. 

 A simplified source pulse is modelled as a 1-100 Hz band-limited impulse (sync 
function).  

 Demonstrate similarities between the modelling results and the hydroaocustic 
recordings at the H10N and H04S. 
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***) Kevin Heaney and Richard Campbell, “Effective ice model for under-ice propagation using the 
fluid-fluid parabolic equation”. Proceedings of Meetings on Acoustics, Vol. 19, 070052 (2013). 

*) Generated using E.U. Copernicus Marine Service Information. 
http://marine.copernicus.eu/services-portfolio/access-to-products/ 
**) The GEBCO Digital Atlas published by the British Oceanographic Data Centre on behalf of IOC 
and IHO, 2003. https://www.gebco.net/data_and_products/gridded_bathymetry_data/ 
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https://www.gebco.net/data_and_products/gridded_bathymetry_data/
https://www.gebco.net/data_and_products/gridded_bathymetry_data/


AS5.1/NH1.18/SM5.3 Impact of ice-cover on long-range propagation  
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H04S  Range-independent ice-cover overlying 
upward refracting infinite halfspace. 

 Source at depth of 551 m. 

 Ice1: In-ice bulk sound-speeds: 
 Compressional sound-speed cp = 3564 m/s. 

 Shear sound-speed cs = 1442 m/s (chosen 
to absorb acoustic energy from the water 
column). 

 Ice2: In-ice bulk sound-speeds*)**) 
 Compressional sound-speed cp = 3564 m/s. 

 Shear sound-speed cs = 1705 m/s. 

 Common ice properties: 
 Density ρ=0.9 g/cm3. 

 Compressional attenuation αp = 0.5 dB/λ. 

 Shear attenuation αs = 1.0 dB/λ. 

 Thickness 2-10 m. 

 

 
*) Kevin L. Williams et al. Noise Background Levels and Noise Event Tracking/Characterization Under the Arctic Ice Pack: Experiment, 
Data Analysis, and Modeling. IEEE Ocean. Eng. 43,  145-159, 2017 
**) F.B. Jensen et al. Computational Ocean Acoustics, Springer, 2011 

Ice-cover on infinite deep ocean (no bottom) 
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AS5.1/NH1.18/SM5.3 Fluid and elastic ice plane wave reflection coefficient 
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 ORCA *) Plane Wave Reflection 
computation: 

 Ice thickness: 2, 5 and 10 m. 

 Left panel: 
 Reference Elastic Ice: 

 Compressional sound-speed cp = 3564 m/s. 

 Shear sound-speed cs = 1442 m/s. 

 Compressional attenuation αp = 0.5 dB/λ. 

 Equivalent Fluid Ice: 

 Compressional sound-speed cp = 1320 m/s. 

 Compressional attenuation αp = 0.8 dB/λ. 

 

 Right panel: 
 Reference Elastic Ice: 

 Compressional sound-speed cp = 3564 m/s. 

 Shear sound-speed cs = 1705 m/s. 

 Compressional attenuation αp = 0.5 dB/λ. 

 Equivalent Fluid Ice: 

 Compressional sound-speed cp = 1720 m/s. 

 Compressional attenuation αp = 1.8 dB/λ. 

 

 

 
 

Ice 1: cs = 1442 m/s Ice 2: cs = 1705 m/s 
Loss (dB) 

*)E. K. Westwood , C. T. Tindle, and N. R. Chapman, “A normal mode model for acoustoelastic 
ocean environments,” J. Acoust. Soc. Am., 100, 3631-3645 (1996). 
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AS5.1/NH1.18/SM5.3 Recorded time-series and calibrated spectrograms 
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*) Generated using E.U. Copernicus Marine Service Information. 
http://marine.copernicus.eu/services-portfolio/access-to-products/ 
**) The GEBCO Digital Atlas published by the British Oceanographic Data Centre on behalf of IOC 
and IHO, 2003. https://www.gebco.net/data_and_products/gridded_bathymetry_data/ 
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AS5.1/NH1.18/SM5.3 Time-series modelling H10N to event 
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• Modelled (left two panels) and recoded (right panel). 
• Source spectrum not included in the modelling 
• Early low spectral levels in both model and data 
• Strong broadband spectral levels at late arrival time in both model and data. 



AS5.1/NH1.18/SM5.3 Time-series modelling H04S to event (no ice) 
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RAM spectrogram modelling RAM time-series modelling Spectrogram of recorded data 

• Modelled (left two panels) and recoded (right panel). 
• No partly covering ice-sheet included in the modelling. 
• Source spectrum not included in the modelling. 
• Spectral levels more uniform over arrival time in model and data. 
• Strong striation below 20 Hz in both model and data. 



AS5.1/NH1.18/SM5.3 Time-series modelling H04S to event (ice) 
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SCATRAM spectrogram modelling SCATRAM time-series modelling Spectrogram of recorded data 

• Modelled (left two panels) and recoded (right panel). 
• Partly covering ice-sheet included in the modelling. 
• Source spectrum not included in the modelling. 
• Low-pass filtering by expedient fluid ice-sheet. 



AS5.1/NH1.18/SM5.3 Time-series modelling H04S to event (no ice) 
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• Modelled depth varying spectrogram. 
• No fluid ice-cover. 
• Striations weaker and more diffuse close to boundaries. 
• November 15th event most likely not close to the sea surface or bottom. 
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AS5.1/NH1.18/SM5.3 Time-series modelling H04S to event (ice) 
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• Modelled depth varying spectrogram. 
• Fluid ice-cover. 
• Striations weaker and more diffuse close to boundaries. 
• November 15th event most likely not close to the sea 

surface or bottom. 
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AS5.1/NH1.18/SM5.3 Possible precursor signal at H04S  
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Path 2: Azimuth 207.8 Path 1: Azimuth 223.6 
Main Arrival 

 A signal (Path 2) arrived at H04S before the 
main November 15th arrival (Path 1). 

 The main arrival is from the direct geodesic 
line-of sight between the estimated 
November 15th source location and H04S. 

 Observed azimuth of the main arrival         
Path 1: 223.6°. 

 Possible early arrival with more southern 
direction of arrival, pointing to the seasonal 
Antarctic ice-sheet. 

 Observed azimuth of the early arrival 
Path 2: 207.8°. 

 Observed time difference Path 1-2: 1234 s. 

 Subsequent analysis to verify if the early 
arrival could be a precursor of the main 
arrival.  

*) Cansi, Y., An automatic seismic event processing for detection and location: the PMCC method, Geophys. Res. Lett., 22, 1021-1024, 1995. 
**) Cansi Y. and Y. Klinger, An automated data processing method for mini-arrays, CSEM/EMSC European-Mediterranean Seismological 
Centre, NewsLetter 11, 1021-1024, 1997. 
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AS5.1/NH1.18/SM5.3 
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Normal displacement of a symmetric Lamb-wave mode in a thin layer. 

Ice-sheet guided precursor wave hypothesis 

Path 1: 
Main arrival 

Green path: 
In-ice Lamb-wave Blue path: 

In-ice compressional wave 

Grey paths 

 Path 1 (red) is the main arrival with a totally  in-water travel 
path which passes under the ice-sheet. 

 Hypothesis that the earlier arrival (green) results as a 
combination of in-water and in-ice propagation: 

 Propagation from the source (Nov 15th event) to the ice-sheet, 
where the sound couples into the ice. 

 Propagation as ice-guided wave through the ice-sheet out to an 
exit point. 

 Propagation from the exit point on the ice-sheet, along the 
geodesic path that arrives with azimuth 207.8° at H04S. 

 Path 2 (green) precursor was observed 1234 s before the main 
arrival. This is attributed to: 

 In-ice propagation via a symmetric Lamb-wave like mode with 
phase speed*) 2·cs ·(1- cs

2/cp
2)0.5 =  3087 m/s. 

 Lowest symmetric ice-guided mode for a floating ice-sheet in 
the limit of wavelength >> ice-sheet thickness [seasonal ice-
sheet thickness O(1-10m)]. 

 The blue path is in-water and in-ice propagation path using 
bulk compressional (p-wave) ice sound-speed of 3500 m/s.  

 The gray paths are partial in-ice propagation paths but with 
incompatible delay times. 

 In conclusion: The blue and green early arrivals are compatible 
with the ice-guided precursor wave hypothesis (Path 2). 

*) Frank Press and Maurice Ewing, “Propagation of Elastic Waves in a Floating Ice Sheet”, Transactions, American 
Geophysical Union, Vol. 32, No. 2, pp. 673-678, 1951. 
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AS5.1/NH1.18/SM5.3 
Conclusions 

• Polar sound speed causes significant time-dispersion of recorded time-series as 
observed in the data. 

• Effective fluid to elastic ice-cover low-pass filters the time-series as observed in the 
data. 

• Elastic ice-cover requires to have a relative low shear speed for the effective fluid ice-
cover to have the same impact on the modelled time-series. 

• Stable striation(s) in the modelling results of the signal recorded at H04S is also 
observed in the data. 

• The modelled striations appear to become weak and diffuse close to the ocean 
surface and bottom. 

• These observations indicate that the November 15th event most likely happened at 
distance from the ocean boundaries. 

• Early arrival recorded at HA04 on November 15th is compatible with the hypothesis 
of the signal coupling to a wave guided in the seasonal Antarctic ice-sheet. 

• Further analysis of signal features and propagation is still on-going. 
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