Re-engineering and optimization of GEOtop 3.0 integrated hydrological model

Elisa Bortoli¹ Giacomo Bertoldi¹ Alberto Sartori² Stefano Cozzini³

¹EURAC Research, Institute for Alpine Environment, Bolzano, Italy

²SISSA, Trieste, Italy

³CNR-IOM and Exact-lab Trieste, Italy

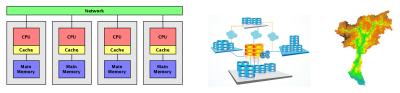
EGU General Assembly, Vienna, 7-12 April 2019

eurac research

Motivation and Aims

- 2 Model overview
- 3 New GEOtop 3.0
- Profiling and Optimizations
- **5** Conclusions and Outlook

Motivation


Scientific softwares

- $\bullet\,$ solve complex scientific problems $\,\to\,$ IHMs
 - solve states (SWC) and fluxes (ET) in terrestrial compartments
 - computationally expensive
 - $\bullet~$ large domains $\rightarrow~$ spatial high-resolution
 - $\bullet~$ long simulation periods $\rightarrow~$ climatic simulations
- issue: low emphasis on code quality [1]

Challenges

- changes in computer architectures
- more data availability

Productivity \rightarrow Need of software refactoring!


[1] Heaton et al. (2015)

Aims

GEOtop model [2]: 20 years of development

- scientific and applied problems
- increased complexity [3]

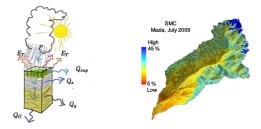
GOAL: software reengineering and refactoring

- robust and stable
- easily usable for operational applications
- optimized for modern architectures

[2] Rigon et al. (2006) [3] https://ideas-productivity.org/ideas-classic/how-to/

GEOtop model

The GEOtop model simulates


- water flow in the soil \rightarrow Richards' eq (sub) + Kinematic eq (sur)
- $\bullet\,$ energy exchange with the atmosphere $\,\rightarrow\,$ full integration of equation

Water and energy budgets can be activated

- ${\scriptstyle \bullet}$ one or the other \rightarrow simplification
- $\bullet\,$ both them together $\,\rightarrow\,$ realistic

Two setup configurations

- \bullet 1D: only vertical fluxes $\,\rightarrow\,$ balances at local scale
- \bullet 3D: vertical and lateral fluxes $\,\rightarrow\,$ balances at basin scale

GEOtop packages

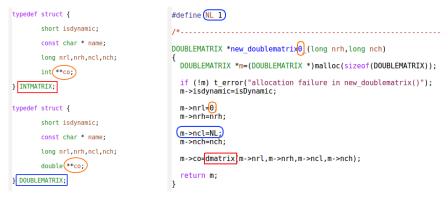
The core components of the package were presented in the $\mathbf{2.0}$ version [4]

- written in C and released in 2014 as free open-source project
- scientifically tested and published [5]
- documented on GitHub repository

http://geotopmodel.github.io/geotop/

Scientific quality of the project but still missing a modern software engineering approach!

[4] Endrizzi et al. (2014) [5] Kollet et al. (2016)



GEOtop 2.0: issues

Data Structures \rightarrow **Definition**

- \bullet Code repetitions \rightarrow time consuming maintenance
- \bullet Pointers of pointers \rightarrow difficult debug

Data Structures \rightarrow Allocation

- \bullet Lower bound definition \rightarrow confusing and error-prone
- \bullet Allocation functions \rightarrow not easily understandable

GEOtop 3.0: requirements

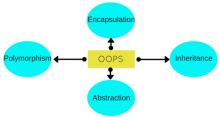
New version needed \rightarrow GEOtop 3.0

Software engineering needs

- scientific validated
- collaboratively developed
- easy to document with track changes
- modular and flexible
- extensively tested
- computationally efficient

Software productivity tools

- pre/post processing for I/O preparation and visualization
- sensitivity analysis and calibration



GEOtop 3.0: modularity and flexibility

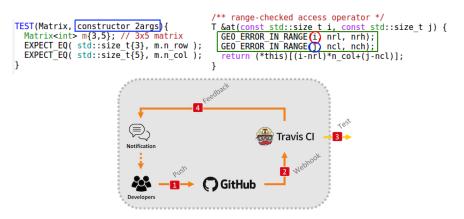
- C++ programming language:
 - object-oriented approach (OOPS) [6]
 - presence of *templates*
 - simplicity of code translation

Objectives

- $\bullet\,$ uniform interface for data structure $\,\rightarrow\,$ understanding $+\,$ optimization
- ullet code reusage ightarrow maintainance
- \bullet memory management \rightarrow avoiding memory leaks

[6] Stroustrup (2013)

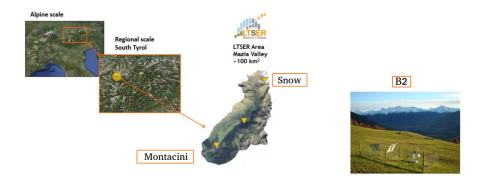
GEOtop 3.0: modularity and flexibility


NEW Data Structures \rightarrow **Definition + Allocation**

```
template <class T> class Matrix {
public:
   /** lower and upper bounds */
   std::size t nrh, nrl; // rows
   std::size t nch. ncl: // columns
   std::size t n row, n col;
   /** the actual data */
   std::unique ptr<T[]> co;
   /** destructor. default is fine */
   ~Matrix() = default:
   /** default constructor is deleted */
   Matrix() = delete:
   /** constructor */
   Matrix(const std::size t nrh, const std::size t nrl,
           const std::size t nch, const std::size t ncl):
          nrh{_nrh}, nrl{_nrl}, nch{_nch}, ncl{ ncl},
          n row{nrh-nrl+1}, n col{nch-ncl+1},
          co { new T[n row*n col]{} } {}
   Matrix(const std::size_t r, const std::size t c):
          Matrix{r,1,c,1} {}
```

Testing: framework

To improve code reliability:


- \bullet test correctness of new code $\rightarrow\,$ unit tests with google test [7]
- \bullet access valid elements indexes $\,\rightarrow\,$ bound check with macros
- same results of 2.0 \rightarrow continuous integration with TravisCl [8]

[7] https://github.com/google/googletest [8] https://travis-ci.org/

Testing: examples

Test case	Area [km ²]	Resolution [m]	Cells	Stations	Time
$1D_WE$	[-]	[-]	1	1	5 years
3D_E	62	100	10 k	7	1 month
3D_WE	2.5	20	17 k	4	1 week

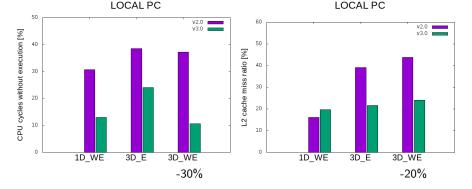

Testing: hardware architectures

Local pc $\,\rightarrow\,$ profiling and testing

- Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
- 1 socket, 4 cores/socket, 2 threads/core
- Memory: 6 MB Cache, 16 GB RAM

VSC-3 [9] \rightarrow testing

- Intel(R) Xeon(R) CPU E5-2650 v2 @ 2.60GHz
- 2 sockets, 8 cores/socket, 2 threads/core
- Memory: 20 MB Cache, 128 GB RAM


[9] http://www.vsc.ac.at/systems/vsc-3/

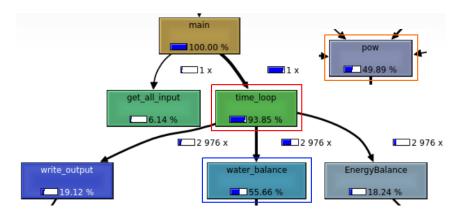
Testing: profiling

Profilers:

- (1) Likwid-perfctr [10]: CPU cycles without execution + L2 cache misses
- (2) Callgrind [11]: CPU cycles in each function
- (3) Class Timer<T>: function calls + CPU time

[10] https://github.com/RRZE-HPC/likwid

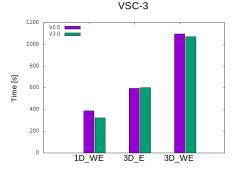
[11] http://valgrind.org



Testing: profiling

CPU time: most expensive functions

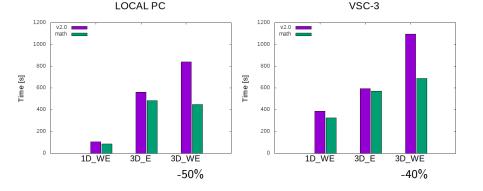
- water balance \rightarrow B2 and Montacini (35% and 73%)
- input reading \rightarrow snow (42%)


CPU cycles: pow() \rightarrow B2 and Montacini (50% and 31%)

Optimization strategy

Check: run time comparison between GEOtop 3.0 and to 2.0

Optimization

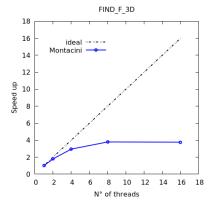

- Maths optimization
- OpenMP parallelization
- integration with MeteolO library

Math optimizations

The function pow(): very much used

- pow(a,2) \rightarrow #define pow_2(a)((a)(a))
- applied a property of logarithms: $a^b = e^{b*log(a)}$

Results: CPU time decrease for all test cases

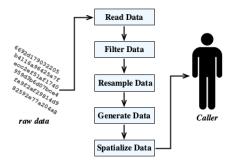

OpenMP parallelization

Parallelization of expensive functions:

- \bullet processes \rightarrow input reading (snow) + water balance (B2, Montacini)
- used the same data \rightarrow OpenMP (shared memory)

Results:

- ${ullet}$ water balance: sub-linear speed up $\,\rightarrow\,$ threads competing for cores
- input reading: no scaling \rightarrow need better I/O!



MeteoIO library

 $C{++}$ library to make data access easy and safe for simulations ${\scriptstyle [12]}$

Œ

- uniform interface to meteo data in the model
- robust I/O, unobtrusive and simple for the user
- filtering, resampling, spatial interpolation

Simplified view of the MeteoIO dataflow.

[12] Bavay et al. (2014)

Conclusions and Outlook

GEOtop 3.0

Software engineering practices

- \bullet collaboratively developed \rightarrow community-based
- $\bullet\,$ easy to document with track changes $\,\rightarrow\,$ git versioning system [13]
- $\bullet\,$ modular and flexible $\,\rightarrow\,$ object oriented approach
- ullet extensively tested ightarrow unit + integration tests
- computationally efficient \rightarrow Maths + OpenMP

Conclusions and Outlook

Learned lessons

- importance of refactoring before optimization
- optimization results depend on the type of test case
 - 1D vs 3D
 - water vs energy

To do

- \bullet Maths optimization \rightarrow use libraries (BLAS [14], Eigen [15], ...)
- \bullet OpenMP parallelization \rightarrow computationally expensive functions
- \bullet MeteolO library \rightarrow data filtering + interpolation

THANKS FOR YOUR TIME!

The research reported in this work was supported under HPC-TRES program award number 2017-20 by OGS, CINECA and EURAC Research, and by the project DPS4ESLAB (Data Platform and Sensing Technologies for Environmental Sensing LAB), financed by the EU program: FESR 2014-2020: Asse 1 Ricerca e Innovazione 3 bando.

The computational results presented have been achieved [in part] using the Vienna Scientific Cluster (VSC).

For the test cases, data from the Long Term Ecological Research Area Mazia Valley (South Tyrol, Italy) have been used.

Siegfried Höfinger, Samuel Senorer, Christian Brida and Emanuele Cordano are acknowledged for their technical support.

[1] D. Heaton, Dustin and J.C. Carver

Claims about the use of software engineering practices in science: A systematic literature review

Information and Software Technology 67, 207219, https://doi.org/10.1016/j.infsof.2015.07.011, 2015.

- [2] R. Rigon, G. Bertoldi, and T.M. Over

GEOtop: a distributed hydrological model with coupled water and energy budgets

J. Hydrometeorol. 7 *(3)*,371388, https://doi.org/10.1175/JHM497.1, 2006.

[3] https://ideas-productivity.org/ideas-classic/how-to/

[4] S. Endrizzi, S. Gruber, M. Dall'Amico, and R. Rigon GEOtop 2.0: simulating the combined energy and water balance at and below the land surface accounting for soil freezing, snow cover and terrain effects

Geosci. Model Dev., 7,2831-2857, https://doi.org/10.5194/gmd-7-2831-2014, 2014.

[5] S. Kollet, M. Sulis, R. M. Maxwell, C. Paniconi, M. Putti, G. Bertoldi, E. T. Coon, E. Cordano, S. Endrizzi, E. Kikinzon, E. Mouche, C. Mugler, Y. Park, J. C. Refsgaard, S. Stisen, E. Sudicky The integrated hydrologic model intercomparison project, IH-MIP2: A second set of benchmark results to diagnose integrated hydrology and feedbacks

Water Resour. Res., 53, 867890, https://doi.org/10.1002/2016WR019191, 2017.

References III

- [6] B. Stroustrup(2013)

The C++ Programming Language : Fourth Edition. ISBN : 0321154916. URL : https://books.google.de/books?id=LgmqCAAAQBAJ.

- [7] https://github.com/google/googletest
- [8] https://travis-ci.org/
- [9] http://www.vsc.ac.at/systems/vsc-3/
- [10] https://github.com/RRZE-HPC/likwid
- [11] http://valgrind.org/docs/manual/cl-manual.html

[12] M. Bavay, T. Egger
MeteolO 2.4.2: a preprocessing library for meteorological data *Geosci. Model Dev.*, 7,3135-3151, https://doi:10.5194/gmd-7-3135-2014, 2014.

- [14] http://www.netlib.org/blas/
- [15] http://eigen.tuxfamily.org/index.php?title=Main_Page