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Influence of acidity on hydration constants OH, NO3 radical studies on aqueous-phase chemistry
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O3 studies on aqueous-phase chemistry
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- OH or NO3 radicals can react 
either by H-atom abstraction, 
electron transfer or by addition 
to a double bond

- OH radicals usually react by 
H-atom abstraction with 
saturated compounds in the 
range of k = 107 -109 M-1 s-1

- Unsaturated and aromatic 
compounds react by OH 
radical addition in the range of 
k = 109 -1010 M-1 s-1

- Acidity effect on reactivity of 
OH with organics is generally 
small

- Exceptions are small organic 
acids such as fomic, acetic, 
oxalic and malonic acids, 
which are more dependent on 
the acidity of the surrounding 
environment

- NO3 reactions of protonated 
saturated aliphatic carboxylic 
acids are in the range of 
k = 104 -106 M-1 s-1
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Fig. 2: Equilibria and measured pH 
dependency of the apparent hydration 
constant of pyruvic acid, a α-keto- 
carboxylic acid, in aqueous solutions 
solution.

Fig. 3: Ratio of ozone reaction rate constants of deprotonated and protonated 
organics in aqueous solution.

Fig. 4: Reactivity ratios of different dissociating organics. 
The ratio of the dianion and protonated dicarboxylic acid is 
indicated by (di).

Fig. 5: NO3 reactivity ratios of different carboxylic acids. 

Fig. 1: Chemical processes influenced by acidity in tropospheric aerosols.

- Ozone is an electrophilic and very selective oxidant for organic compounds

- Rather high acidity dependencies exist for phenolic compounds and hydroxylated 
benzoic acids

- Hydration processes are typically acid- or base-catalyzed

- Equilibrium constant KHyd describes the ratio of the diol and carbonyl fraction of the 
aldehyde or ketone

- Hydration of simple aldehydes and ketones and dicarbonyls is unaffected by pH

- Multifunctional carbonyl compounds that contain pH sensitive moieties, such as 
α-oxocarboxylic acids, are highly influenced by the pH

- Deprotonated acids 
react in a range of 
k = 106 -108 M-1 s-1 
with NO3 radicals

- NO3 usually react 
by addition with 
unsaturated acids 
(k = 107 -108 M-1 s-1)

- Addition reaction on 
the C=C double 
bond is more 
important than the 
ETR

- Hydration processes of multifunctional carbonyl compounds, such as 
α-oxocarboxylic acids, are highly influenced by the pH-value

- OH radical reaction are less affected by the pH, with exception of small carboxylic 
acids such as formic acid and oxalic acid

- NO3 and O3 reactions with organic acids, are highly affected by the acidity of the 
surrounding aqueous phase

- Acidity of aqueous atmospheric solutions is a key parameter 

- Drives the partitioning of semi-volatile acidic or basic trace gases and their linked aqueous-phase chemistry

- Aqueous-phase chemistry affectes the acidity of atmospheric aqueous phases, e.g. deliquesced aerosol 
particles, cloud and fog droplets

- Figure 1 illustrates the most important processes where acidity plays a role

- Feedbacks in acidity and chemistry have crucial implications: (i) tropospheric lifetime of air pollutants, hence 
air quality and atmospheric aerosol composition, (ii) deposition input into other terrestrial and oceanic 
ecosystems, (iii) the visibility, (iv) climate and (v) human health

- The present study outline impacts of acidity (i) on the hydration of organic carbonyl compounds and (ii) 
multiphase chemistry of dissociating organic compounds in aqueous particles and clouds 

- A comprehensive literature survey presents the current state of knowledge of acidity dependencies


