Kriging-based Mapping of Space-borne CO$_2$ Measurements by Combining Emission Inventory and Atmospheric Transport Modelling

Presentation at EGU 2020, Vienna, Austria

Shrutilipi Bhattacharjee, Jia Chen, Li Jindun, Xinxu Zhao

Professorship of Environmental Sensing and Modeling (ESM)
Department of Electrical and Computer Engineering, Technical University of Munich (TUM), Germany
May, 2020
Outline

• Problem definition and objectives
 – Sparse sampling of OCO-2 measurement (including XCO₂)
 – Regional mapping of XCO₂

• Solution approach
 – Multivariate kriging with STILT-based atmospheric transport modeling

• Results

• Conclusions and future works
Problem Definition

- The Orbiting Carbon Observatory-2 (OCO-2) is offering unprecedented accuracy for the space-based measurements of atmospheric CO₂ concentration.

- Problem: The Level-2 retrieval is irregular in space and time. Sparse sampling, gap between two OCO-2 swaths on a single day: ~2558 km, missing footprints in 8 cross-track.

A Small Regional Scenario

- Measurements on October 13, 2017
- Area of the region 92 km × 135 km
- Number of samples: 464
- Almost 89% of the total area is unmeasured.
Objectives

- Mapping of available XCO$_2$ measurements for local regions: Generate Level-3 product
- Solution approach: Mapping with the help of densely sampled correlated information

For example:
- ODIAC monthly CO$_2$ emission estimates (Bhattacharjee and Chen, 2020)
- ODIAC + Wind transport (STILT)

Method

- Geostatistical interpolation method: Traditional Kriging/ Cokriging

ODIAC: Open-source Data Inventory for Anthropogenic CO$_2$. STILT: Stochastic Time-Inverted Lagrangian Transport model
CoKriging

- XCO$_2$ interpolation = \(f(\text{Euclidean distance, Emission estimates, Atmospheric transport}) \)

Semivariograms: Lag distance vs. primary variable

Cross-variograms: Lag distance vs. (primary + secondary) variables

- Advantage
 - Additional domain knowledge for the estimation process
 - Higher prediction accuracy

<table>
<thead>
<tr>
<th>Method</th>
<th>Kriging</th>
<th>CoKriging</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>Level-2 XCO$_2$</td>
<td>Level-2 XCO$_2$</td>
</tr>
<tr>
<td></td>
<td>ODIAC emission</td>
<td>ODIAC emission</td>
</tr>
<tr>
<td></td>
<td>STILT footprint</td>
<td>STILT footprint</td>
</tr>
<tr>
<td>Output</td>
<td>Level-3 XCO$_2$ mapping</td>
<td>Predicted mapping surface</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Level-3 OCO-2’s XCO$_2$</td>
</tr>
</tbody>
</table>

Primary Variable
(OCO-2’s Level-2 XCO$_2$)

Secondary Variable
(ODIAC estimates)

Coordinate Locations
(X, Y)

Multivariate CoKriging

Secondary Variable
(wind transport
(STILT))
STILT Simulation

- It is a Lagrangian particle dispersion model (LPDM)
- Footprint map: Represents the upstream area that influences the air arriving at the receptor point considering the other pixels for the whole SR

footprint
m² s ppm/μmol

footprint

One receptor point •
Optimization of STILT Parameters

- Wind data sources (Default: ERA5)
- Backward time
- Particle number
Study Regions

- Chosen as per the availability of the Total Carbon Column Observing Network (TCCON) measurement data for validation

<table>
<thead>
<tr>
<th>SR</th>
<th>Locations</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamont, USA</td>
<td>36.604 N, 97.486 W</td>
<td>20171013</td>
</tr>
<tr>
<td>Karlsruhe, Germany</td>
<td>49.1002 N, 8.4385 E</td>
<td>20170421</td>
</tr>
<tr>
<td>Lauder, New Zealand</td>
<td>45.038 S, 169.684 E</td>
<td>20170123</td>
</tr>
<tr>
<td>Ascension, Island</td>
<td>7.933333 S, 14.416667 W</td>
<td>20170130</td>
</tr>
<tr>
<td>Rikubetsu, Japan</td>
<td>43.4567 N, 143.7661 E</td>
<td>20170605</td>
</tr>
</tbody>
</table>

STILT Parameters

<table>
<thead>
<tr>
<th>SR</th>
<th>Wind Data Sources</th>
<th>Backward time</th>
<th>Particle number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamont, USA</td>
<td>GDAS (0.5 degree)</td>
<td>-16h</td>
<td>2500</td>
</tr>
<tr>
<td>Karlsruhe, Germany</td>
<td>ERA5 (31 km)</td>
<td>-12h</td>
<td>1000</td>
</tr>
<tr>
<td>Lauder, New Zealand</td>
<td>GDAS (0.5 degree)</td>
<td>-16h</td>
<td>1500</td>
</tr>
<tr>
<td>Ascension, Island</td>
<td>GDAS (0.5 degree)</td>
<td>-24h</td>
<td>3000</td>
</tr>
<tr>
<td>Rikubetsu, Japan</td>
<td>GDAS (0.5 degree)</td>
<td>-12h</td>
<td>2000</td>
</tr>
</tbody>
</table>
Result: Study Region: Karlsruhe, Germany

<table>
<thead>
<tr>
<th>SR</th>
<th>Predicted by Simple Kriging</th>
<th>Predicted by Cokriging with ODIAC estimates</th>
<th>Predicted by Cokriging with ODIAC + wind transport (STILT)</th>
<th>Legends (predicted XCO₂ in ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karlsruhe, Germany</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- 392.295 – 399.374
- 399.374 – 403.388
- 403.388 – 405.664
- 405.664 – 406.955
- 406.955 – 407.687
- 407.687 – 408.102
- 408.102 – 408.337
- 408.337 – 408.47
- 408.47 – 408.546
- 408.546 – 408.679
- 408.679 – 408.915
- 408.915 – 409.333
- 409.333 – 410.061
- 410.061 – 411.352
Result Summary: All Study Regions: Prediction Error

- Comparison using Root Mean Square Error (RMSE): 15 mins window of TCCON measurement
Result Summary: All Study Regions: Prediction Error

- Comparison using Root Mean Square Error (RMSE): 30 mins window of TCCON measurement
Conclusions

• We have developed a cokriging method using emission inventories and atmospheric transport information (footprints)

• This new approach is more accurate compared to the univariate mapping

• Mainly suitable for the extrapolation in the whole study region

• Extrapolated results agree well with TCCON measurements.
References

Shrutilipi Bhattacharjee
Postdoctoral fellow, ESM
Email: shrutilipi.bhattachrjee@tum.de

Li Jindun
Masters student, ESM
Email: jindun.li@tum.de

Xinxu Zhao
Ph.D. scholar, ESM
Email: xinxu.zhao@tum.de

Jia Chen
Head, Environmental sensing and modeling (ESM)
Email: jia.chen@tum.de

Thank you for your attention...

Any question?