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Motivation

e ESA Earth Explorer 10 mission candidate " Hydroterra”
- Geo-synchronous C-band SAR system providing observations at
- high spatial resolution (below 100m - 1km)
- high temporal resolution (hourly)
to be used for soil-moisture, vegetation and rainfall retrievals.

e How to assess the mission requirements?
How to demonstrate the added-value of such measurements?
= perform a Closed-loop experiment

1) simulate "Hydroterra-like” datasets
2) perform retrieval-experiments with the simulated datasets
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Simulation of 05 measurements
at high temporal resolution



Forward simulation - A 2-step procedure

1) For each site, a radiative-transfer model (RT1 [1]) is optimized to
represent Sentinel-1 data at 500m, spatial resolution
- using auxiliary soil-moisture and LAl datasets from
SURFEX-ISBA [3] simulations
- both constant and temporally varying model parameters are
estimated via nonlinear regression that minimizes

X2 _ Z ((o_gl _ a_énodel)Z)
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2) oo measurements at hourly intervals are simulated using obtained
model-parameters and SURFEX-ISBA simulations
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Forward Simulation Example



Forward simulation

e Within the selected RT1 model parametrization [1, 2], the following
variables are estimated for each site individually:
- single-scattering albedo (w) of the vegetation-coverage

- "effective” bare-soil fraction (bsf)
- a directionality parameter of the soil-scattering BRDF
- a constant factor to scale SM input-timeseries

= How well can the temporal dynamics of Sentinel-1 data be
represented via a radiative-transfer model? !
- using only soil-moisture and LAl as dynamic variables
- allowing additional (slowly varying) temporal variations in the

single-scattering albedo w
- allowing an individual bsf estimate for each satellite-orbit

1 . . T .
Note that by allowing high-frequency variations in the model-parameters a perfect fit can of course always be obtained. However the
resulting parameter-timeseries would show a high variability since it ingests all representation-errors between the used datasets.

Furthermore an extrapolation to hourly timestamps would not be directly possible.
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Forward simulation - Input datasets

® Slorbit8(6y=34.47) S-1ombit132(6,=36.1°)  ® S-1orbit 110 (6 =44.0°)
—— SURFEX-ISBA SM —— SURFEX-ISBA LAI (lat/lon = 44.99 /1.01)
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Sentinel-1 o( timeseries alongside the auxiliary SM and LAI datasets used in the
presented model-parameter optimization (South-western France, lat/lon = 44.99/1.01)
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Forward simulation - Calibration performance
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Sentinel-1 vs. modelled o timeseries for different parametrization complexities
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Forward simulation - Simulated data

e once a suitable parametrization has been selected, the RT1-model
can directly be used to simulate o timeseries at different
incidence-angles and temporal resolutions
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Sentinel-1/ simulated oo[d8]

- ® S-lorbit8 (6, =34.4") simulated data (6, = 35)
® S-lorbit110(8=44.0°)  + simulated data (6 = 40)
S-lorbit132 (6=36.1°)  + simulated data (6 = 45)
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Simulated o at hourly intervals using 3-monthly w and const. bsf parametrization 2

2The spikes visible in Jan. 2017 and Feb. 2018 stem from soil-freezing events since the used SURFEX-ISBA SM dataset separates liquid
from frozen soil water content. Since this actually represents the expected behavior, the affected dates have not been masked.
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Forward simulation - Simulated data

e to simulate more realistic data, different noise-levels are added as
additive Gaussian noise in the dB domain
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Simulated o at hourly intervals using 3-monthly w and const. bsf parametrization 2

2The spikes visible in Jan. 2017 and Feb. 2018 stem from soil-freezing events since the used SURFEX-ISBA SM dataset separates liquid
from frozen soil water content. Since this actually represents the expected behavior, the affected dates have not been masked.
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Forward simulation - Simulated data

e to simulate more realistic data, different noise-levels are added as
additive Gaussian noise in the dB domain
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Simulated o at hourly intervals using 3-monthly w and const. bsf parametrization 2

2The spikes visible in Jan. 2017 and Feb. 2018 stem from soil-freezing events since the used SURFEX-ISBA SM dataset separates liquid
from frozen soil water content. Since this actually represents the expected behavior, the affected dates have not been masked.
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A Closed Loop Experiment




Closed Loop Experiment - questions

Now, the simulated datasets are used to perform a retrieval of both soil-
and vegetation parameters, trying to address the following questions:

e What is the impact of temporal sampling?
e [s it feasible to separate soil- and vegetation temporal dynamics from
a single incidence-angle o dataset?
e How is the retrieval performance affected by the absence of auxiliary
information on the vegetation-dynamics?
e What noise-level is acceptable to obtain meaningful retrieval-
performance short-term / long-term temporal dynamics
- under different vegetation-coverage densities
- how to properly correct for noise in the retrieved SM timeseries?

= The following slides show some re-fit results
e at 1-6-12-72 hourly sampling of the simulated dataset
e using different noise-levels (0.25dB and 0.5dB)
e with/without a-priori knowledge on w timeseries

e using 3-monthly interpolated seasonality for VOD-retrieval (o< LAI) -




Closed Loop - Inversion of simulated dataset

—— SURFEX/ISBASM  —— SURFEX/ISBALAI  ® retrieved SM —— noise-filtered with Savitzky-Golay filter ~ — - retrieved VOD
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Retrieved SM and VOD at 6y = 40° and 0 noise = 0.25dB
with a-priori knowledge of auxiliary w timeseries
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Closed Loop - Inversion of simulated dataset

—— SURFEX/ISBASM  —— SURFEX/ISBALAI  ® retrieved SM —— noise-filtered with Savitzky-Golay filter ~ — - retrieved VOD
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Note that while short-term variations (e.g. anomalies) are still well represented in the high-temporal resolution datasets,

long:term variations of soil- and vegetation can no longer be separated properly once the vegetation has reached a certain density. /1



Closed Loop - Inversion of simulated dataset

—— SURFEX/ISBASM  —— SURFEX/ISBALAI  ® retrieved SM —— noise-filtered with Savitzky-Golay filter ~ — - retrieved VOD
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Retrieved SM and VOD at 6y = 40° and o poise = 0.5dB without auxiliary information 3

Note that while short-term variations (e.g. anomalies) are still well represented in the high-temporal resolution datasets,

§ ons-term variations of soil- and vegetation can no longer be separated properly once the vegetation has reached a certain density. 1,1



Conclusion / Outlook

e high temporal resolution allows application of more sophisticated
noise-removal techniques in the temporal domain

= can be used to compensate radiometric resolution
e good understanding of factors influencing the measured signal is crucial
for disentanglement of soil- and vegetation dynamics

= what are feasible auxiliary datasets that can be used to mimic those
dynamics (e.g. LAI, NDVI, EVI, etc.) ?

Further work is planned on:
e optimizing the "calibration — simulation— retrieval” cycle to come
up with a robust model parametrization
e assessing the performance of derived products (e.g. rainfall retrievals
using SM2Rain algorithm [4])
e utilization of simulated interception and irrigation datasets
e application of the experiment on larger areas with diverse landscapes
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