

Assessing prospects of sub-daily radar-observations to improve the understanding of soil- and vegetation dynamics.

Raphael Quast¹, Wolfgang Wagner¹, Jean-Christophe Calvet², Clèment Albergel², Bonan Bertrand², Luca Brocca³, Paolo Filippucci³, and Stephen Hobbs⁴

1 TII Wien Department of Geodesv and Geoinformation 1040 Vienna Austria

²CNRM—Université de Toulouse ³ Research Institute for Météo-France CNRS 31057 Toulouse France

Geo-Hydrological Protection National Research Council 06128 Perugia Italy

4 Cranfield University Bedford, MK43 0AL HK

raphael.quast@geo.tuwien.ac.at

EGU General Assembly 2020 HS6.3 May 6, 2020

Motivation

- ESA Earth Explorer 10 mission candidate "Hydroterra"
 - Geo-synchronous C-band SAR system providing observations at
 - high spatial resolution (below 100m 1km)
 - high temporal resolution (hourly)

to be used for soil-moisture, vegetation and rainfall retrievals.

- How to assess the mission requirements?
 How to demonstrate the added-value of such measurements?
 - ⇒ perform a Closed-loop experiment
 - 1) simulate "Hydroterra-like" datasets
 - 2) perform retrieval-experiments with the simulated datasets

Simulation of σ_0 measurements at high temporal resolution

Forward simulation - A 2-step procedure

- 1) For each site, a radiative-transfer model (RT1 [1]) is optimized to represent Sentinel-1 data at 500m, spatial resolution
 - using auxiliary soil-moisture and LAI datasets from SURFEX-ISBA [3] simulations
 - both constant and temporally varying model parameters are estimated via nonlinear regression that minimizes

$$\chi^2 = \sum_{time,\theta_0} \left(\left(\sigma_0^{S1} - \sigma_0^{model}\right)^2 \right)$$

2) σ_0 measurements at hourly intervals are simulated using obtained model-parameters and SURFEX-ISBA simulations

Forward Simulation Example

Forward simulation

- Within the selected RT1 model parametrization [1, 2], the following variables are estimated for each site individually:
 - single-scattering albedo (ω) of the vegetation-coverage
 - "effective" bare-soil fraction (bsf)
 - a directionality parameter of the soil-scattering BRDF
 - a constant factor to scale SM input-timeseries
- \Rightarrow How well can the temporal dynamics of Sentinel-1 data be represented via a radiative-transfer model? 1
 - using **only** soil-moisture and LAI as dynamic variables
 - allowing additional (slowly varying) temporal variations in the single-scattering albedo $\boldsymbol{\omega}$
 - allowing an individual bsf estimate for each satellite-orbit

¹Note that by allowing high-frequency variations in the model-parameters a perfect fit can of course always be obtained. However the resulting parameter-timeseries would show a high variability since it ingests all representation-errors between the used datasets. Furthermore an extrapolation to hourly timestamps would not be directly possible.

Forward simulation - Input datasets

Sentinel-1 σ_0 timeseries alongside the auxiliary SM and LAI datasets used in the presented model-parameter optimization (South-western France, lat/lon = 44.99/1.01)

Forward simulation - Calibration performance

Sentinel-1 vs. modelled σ_0 timeseries for different parametrization complexities

Forward simulation - Simulated data

 once a suitable parametrization has been selected, the RT1-model can directly be used to simulate σ_0 timeseries at different incidence-angles and temporal resolutions

Simulated σ_0 at hourly intervals using 3-monthly ω and const. bsf parametrization ²

 $^{^2}$ The spikes visible in Jan. 2017 and Feb. 2018 stem from soil-freezing events since the used SURFEX-ISBA SM dataset separates liquid from frozen soil water content. Since this actually represents the expected behavior, the affected dates have not been masked.

Forward simulation - Simulated data

• to simulate more realistic data, different noise-levels are added as additive Gaussian noise in the dB domain

Simulated σ_0 at hourly intervals using 3-monthly ω and const. bsf parametrization 2

 $^{^2}$ The spikes visible in Jan. 2017 and Feb. 2018 stem from soil-freezing events since the used SURFEX-ISBA SM dataset separates liquid from frozen soil water content. Since this actually represents the expected behavior, the affected dates have not been masked.

Forward simulation - Simulated data

• to simulate more realistic data, different noise-levels are added as additive Gaussian noise in the dB domain

Simulated σ_0 at hourly intervals using 3-monthly ω and const. bsf parametrization ²

 $^{^2}$ The spikes visible in Jan. 2017 and Feb. 2018 stem from soil-freezing events since the used SURFEX-ISBA SM dataset separates liquid from frozen soil water content. Since this actually represents the expected behavior, the affected dates have not been masked.

A Closed Loop Experiment

Closed Loop Experiment - questions

Now, the simulated datasets are used to perform a retrieval of both soiland vegetation parameters, trying to address the following questions:

- What is the impact of temporal sampling?
- Is it feasible to separate soil- and vegetation temporal dynamics from a single incidence-angle σ_0 dataset?
- How is the retrieval performance affected by the absence of auxiliary information on the vegetation-dynamics?
- What noise-level is acceptable to obtain meaningful retrievalperformance short-term / long-term temporal dynamics
 - under different vegetation-coverage densities
 - how to properly correct for noise in the retrieved SM timeseries?
- ⇒ The following slides show some re-fit results
 - at 1-6-12-72 hourly sampling of the simulated dataset
 - using different noise-levels (0.25dB and 0.5dB)
 - with/without a-priori knowledge on ω timeseries
 - ullet using 3-monthly interpolated seasonality for VOD-retrieval (\propto LAI)

Closed Loop - Inversion of simulated dataset

Retrieved SM and VOD at $\theta_0 = 40^{\circ}$ and $\sigma_{noise} = 0.25 dB$ with a-priori knowledge of auxiliary ω timeseries

Closed Loop - Inversion of simulated dataset

Retrieved SM and VOD at $\theta_0 = 40^{\circ}$ and $\sigma_{noise} = 0.25$ dB without auxiliary information ³

³Note that while short-term variations (e.g. anomalies) are still well represented in the high-temporal resolution datasets, long-term variations of soil- and vegetation can no longer be separated properly once the vegetation has reached a certain density.

Closed Loop - Inversion of simulated dataset

Retrieved SM and VOD at θ_0 = 40° and σ_{noise} = 0.5dB without auxiliary information ³

³Note that while short-term variations (e.g. anomalies) are still well represented in the high-temporal resolution datasets, long-term variations of soil- and vegetation can no longer be separated properly once the vegetation has reached a certain density.

Conclusion / Outlook

- high temporal resolution allows application of more sophisticated noise-removal techniques in the temporal domain
 - ⇒ can be used to compensate radiometric resolution
- good understanding of factors influencing the measured signal is crucial for disentanglement of soil- and vegetation dynamics
 - ⇒ what are feasible auxiliary datasets that can be used to mimic those dynamics (e.g. LAI, NDVI, EVI, etc.) ?

Further work is planned on:

- optimizing the "calibration → simulation → retrieval" cycle to come up with a robust model parametrization
- assessing the performance of derived products (e.g. rainfall retrievals using SM2Rain algorithm [4])
- utilization of simulated interception and irrigation datasets
- application of the experiment on larger areas with diverse landscapes

References

- [1] Quast, R.: RT1 python module: https://github.com/TUW-GEO/rt1 (https://doi.org/10.5281/zenodo.3745590)
- [2] Quast, R.; Albergel, C.; Calvet, J.-C.; Wagner, W. A Generic First-Order Radiative Transfer Modelling Approach for the Inversion of Soil and Vegetation Parameters from Scatterometer Observations. Remote Sens. 2019, 11, 285., https://doi.org/10.3390/rs11030285
- [3] Masson, V.; Le Moigne, P.; Martin, E.; Faroux, S.; Alias, A.; Alkama, R.; Belamari, S.; Barbu, A.; Boone, A.; Bouyssel, F.; et al. The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes
 - Geosci. Model Dev. 2013, 6, 929-960.
- [4] Brocca, L., Massari, C., Ciabatta, L., Moramarco, T., Penna, D., Zucco, G., Pianezzola, L., Borga, M., Matgen, P., Martínez-Fernández, J. (2015). Rainfall estimation from in situ soil moisture observations at several sites in Europe: an evaluation of SM2RAIN algorithm.

Journal of Hydrology and Hydromechanics, 63(3), 201-209, doi:10.1515/johh-2015-0016.

The work has been supported by the FFG-ASAP project "DWC-Radar" and the ESA project "Hydroterra (former G-CLASS) Phase-0 Science and Requirement".