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2-D spherical simulations of mantle convection are popular, either in spherical
axisymmetric or spherical annulus geometry.
A problem is that the geometrical restriction forces a downwelling to deform
as it sinks, whereas in 3D it can sink with no deformation. Basically, it is
“squeezed” in the plane-perpendicular direction, forcing it to expand in the in-
plane directions. A rigid/high viscosity downwelling resists this deformation,
sinking with a greatly reduced and unrealistic velocity.
This can be solved by subtracting the geometrically-forced deformation
(“squeezing”) from the strain-rate tensor when calculating the stress tensor.
Specifically, components of in-plane and plane-normal strain rate that are
proportional to radial velocity are subtracted, a procedure that is here termed
“anti-squeeze”.
It is here demonstrated that this leads to realistic sinking velocities whereas
without it, abnormal and unrealistic results can be obtained for high viscosity
contrasts.
This correction has been used since 2010 in the the code StagYY for
spherical annulus calculations (Tackley, PEPI 2008; Hernlund and Tackley,
PEPI 2008).
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Conservation of mass is then given by,
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The deviatoric stresses T are given by,
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Fig. 2. lllustration of what is meant by the “virtual” thickness J/r of a 2D circular slice
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In 3-D geometry a rigid/high viscosity
block can sink without deforming:

Incompressible spherical annulus geometry

The stress terms are:
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Note that the spherical annulus is the (r, phi) plane but g is not zero!

This can be a problem!

Radially-moving material is squeezed as it sinks, forced to deform as:
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High-viscosity material doesn’t want to deform -> gets ‘stuck’.

Solution: Subtract the squeeze!
Subtract forced strain-rates in the normal stress terms.

Assume equal deformation in the rr and theta-theta directions.

=> Anti-squeezed normal stresses:
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It works! Sinking velocity now ~independent of viscosity (see tests).

The out-of plane stress (phi-phi) is not 0!
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In 2-D spherical it must deform as it sinks, which causes it to sink
very slowly (blue curves below) or get stuck (model car, right) unless
the anti-squeeze correction given here is applied (red curves):
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Regarding spherical axisymmetric geometry

Stresses are:
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Now forced deformation occurs for motion in both radial and theta directions:

Vz of block (nondimensional)
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Anti-squeeze could be used in both directions, or use spherical annulus instead...
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Regarding compressibility scosily contrast o bloc
Now, normal stresses have an addition term subtracting the strain-rate due to velocity
divergence (due to compression/decompression associated with increasing/decreasing
pressure).
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Recent results using annulus +
anti-squeeze
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Growing primordial continental crust self-

In 2-D (Cartesian or spherical) geometries the factor should be 1/2 instead of 1/3, consistently in global mantle convection models

because the pressure-induced divergence can only be accommodated by strain in 2

dimensions. This is already known in continuum mechanics. @ Show mere
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through a 3D grid. In the constant thickness case (A), of a cylindrical
Tove 9 (v model with effective Jacobian J =, the virtual thickness s constant everywhere.
Tp =1 T "§ (T) (7) For a variable thickness in the angular direction (B), representative of a spherical

axi-symmetric grid with effective Jacobian J = r2 sin ¢, the virtual thickess depends
on the angular location in the grid and the radius. In the variable radial thickness
case (C) with effective Jacobian ] = 12, the virtual thickness increases with distance
from the center of the grid without any angular dependence.

N@Egﬂm In 2-D spherical, use anti-squeeze!




