# Existence and Stability of Morphodynamic Equilibria in Double Inlet Systems

April 29, 2020



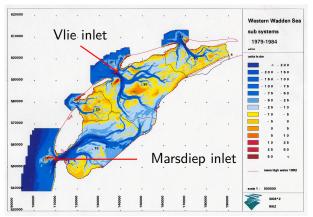


Xiao Deng Thomas Boelens Tom De Mulder Henk Schuttelaars

Double inlet system

April 29, 2020 1 / 11

# Introduction



In the inlets and back-barrier basins, complex channel-shoal patterns are often observed, and these morphodynamic features are highly dynamic.

#### Research Question:

Under what external forcing conditions can a double inlet system in morphodynamic equilibrium exist?

 Is this morphodynamic equilibirum unique?



# Idealized Model Approach

- Simplified geometry (see figures on the right).
- Only essential dynamics taken into account.
- In experiments, forcing at inlet I is fixed and at inlet II is varied, i.e.,  $\hat{\zeta}(0, y, t) = 0.74 \ [m]$  and  $\hat{\zeta}(L, y, t) = A_{M_2}^{\prime\prime} \cos(t - \phi_{M_2}^{\prime\prime}).$

Typical Parameter Values L=59 kmH' = H'' = 12m

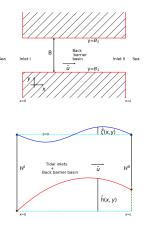


Figure: Top View and Side View



## Model: The system of equations

#### Time integration method

Use time stepping to find an equilibrium

#### Root-finding method

Find an equilibrium directly using a nonlinear root finder



• Morphodynamic equilibria are obtained when the bed does not change anymore on the long (morphodynamic) timescale.

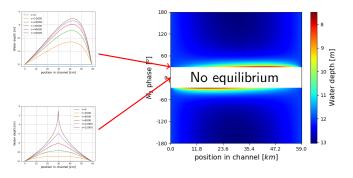


## Solution method

- Expand the physical variables and the equations in small parameter  $\epsilon = A'_{M_2}/H'$ .
- Expand the solution in terms of tidal constituents.
- Discretize in space with finite element method.
- To obtain an equilibrium, the Newton-Raphson method is used, combined with the Arclength method.

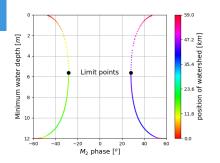


# **Results: Diffusively dominated transport**



The stable equilibrium bed profiles with  $A_{M_2}^{II} = 0.74 \ [m]$  and varying  $\phi_{M_2}^{II}$  are shown in the right figure. Left top figure shows bed evolution starting from an initially flat bottom using time-integration method with  $\phi_{M_2}^{II} = 30^\circ$ . Left bottom figure shows the same experiment as in left top figure but with  $\phi_{M_2}^{II} = 0^\circ$ , in this case the depth vanishes in the middle.

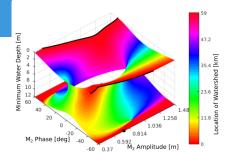
## **Results: Diffusively dominated transport**



The minimum water depth (MWD) of equilibrium bed profiles with  $A_{M_2}^{II} = 0.74 \ [m]$  and a varying  $\phi_{M_2}^{II}$ .

- The solid lines are MWD of stable equilibrium bed profiles.
- The dotted lines are MWD of unstable equilibrium bed profiles.
- No equilibrium is found between the two limit points.
- Arclength method is an effective way to continue across limit points from stable equilibrium to unstable equilibrium.

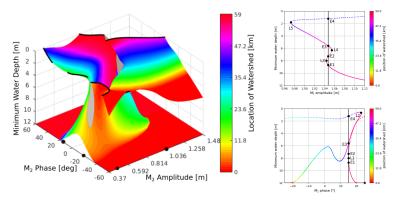
# **Results: Diffusively dominated transport**



The MWD of equilibrium bed profiles as function of  $A_{M_2}^{II}$  and  $\phi_{M_2}^{II}$  is shown.

- The number of equilibria depends on both  $A_{M_2}^{\prime\prime}$  and  $\phi_{M_2}^{\prime\prime}$ .
- For conditions with two equilibria, the stable one has a larger MWD.
- Two black contour lines indicate where the MWD becomes zero.

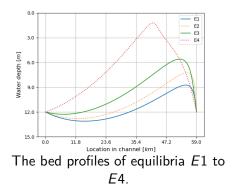
# **Results:** All transport contributions included



Left figure shows the MWD as a function of  $A_{M_2}^{\prime\prime}$  and  $\phi_{M_2}^{\prime\prime}$ , locations where a complex bifurcation structure exists are indicated by grey. Right figures show the bifurcation sturcture for fixed  $\phi_{M_2}^{\prime\prime} = 15^{\circ}$  and varying  $A_{M_2}^{\prime\prime}$  (top right) and for fixed  $A_{M_2}^{\prime\prime} = 1.0471 \ [m]$  and varying  $\phi_{M_2}^{\prime\prime}$  (bottom right).

## **Results:** All transport contributions included

- For  $\phi_{M_2}^{\prime\prime} = 15^{\circ}$  and  $A_{M_2}^{\prime\prime} = 1.0471 \ [m]$  four equilibria exist. Their bed profiles are shown in the figure on the right.
- Two equilibria (*E*1 and *E*3) are stable, the other two (*E*2 and *E*4) are unstable.
- Comparing the water depth, E1 > E2 > E3 > E4 at most locations.



## Conclusion

- The number of morphodynamic equilibria depends strongly on the  $M_2$  tide: either no, one or multiple equilibria are found.
- If no equilibria are found, the two inlets do not communicate with each other anymore: two single inlet systems have formed.

