Controls on the lateral channel migration rate of braided alluvial channel systems.

Aaron Bufe, Jens M. Turowski, Douglas W. Burbank, Chris Paola, Andrew D. Wickert, Stefanie Tofelde
Key question
- What controls the rate of lateral channel migration in alluvial channels?

Aim
- Develop scaling between channel migration rates, the channel geometry and external boundary conditions
- Test the scaling against existing field data

Main finding
- Direct controls on migration rates, \(M_L \)
 - Strong influence of channel bank height \(H_b \)
 - Strong influence of water discharge, \(Q_w \)
 - Weak influence of sediment discharge, \(Q_s \)

\[
M_L = k \frac{Q_w^{0.9 \pm 0.2} Q_s^{0.1 \pm 0.2}}{D_{50} H_b}
\]

Presentation based on:
Bufo et al., (2019), Controls on the lateral channel-migration rate of braided channel systems in coarse non-cohesive sediment. ESPL (Link)
Occurrence of mobile channels

Meandering Rivers (Mississippi, USA)

River deltas (Yellow River China)

Braided Rivers (Rakaia, New Zealand)

Natural and experimental settings
Importance of channel mobility

- Sediment routing
- Bank erosion and river management
- Construction and destruction of stratigraphy
- Valley width across active structures

Figure: USGS

Straub et al., (2009)

Chenyoulan River; Photo: A. Bufe

Bufe et al., (2016), Nat. Geosci.
Two types of channel movement

Avulsions (abrupt)
• Dominant in rapidly aggrading systems

Migration (gradual)
• Dominant in bypass systems

Focus on
• Sediment bypass systems
• Systems dominated by migration
Controls on lateral channel migration rate

Hypothesized controls on channel migration rates

- Water discharge (Q_w)
Controls on lateral channel migration rate

Hypothesized controls on channel migration rates

- Water discharge (Q_w)
- Sediment discharge (Q_s)
Hypothesized controls on channel migration rates

- Water discharge \((Q_w) \)
- Sediment discharge \((Q_s) \)
- Bank height \((H_b) \)

\[
\text{Dimensionless migration rate} = Q_s^* \\
\text{Suspended Sediment flux per channel width (Mt yr}^{-1} \text{ m}^{-1})
\]
Controls on lateral channel migration rate

Hypothesized controls on channel migration rates

- Water discharge (Q_w)
- Sediment discharge (Q_s)
- Bank height (H_b)
- (Bank cohesion (τ_w) – not addressed here)

\begin{align*}
\text{suspended sediment flux per channel width} & \propto Q_s^* \\
\text{meander migration rate} & \propto Q_s^* \\
\text{suspended sediment flux} & \propto Q_s^* \\
\text{dimensionless migration rate} & \propto Q_s^*
\end{align*}

Malatesta et al., (2017), JGR

Wickert et al., (2013), JGR
Challenges

Co-variation of parameters
- For example, water and sediment discharge affect channel geometry => difficult to unravel independent controls on migration rates

Absence of constraints on bank height
- In many field and experimental datasets

Experimental approach
Part 1: Migration rates under constant boundary conditions
- Isolates control of channel geometry.

Part 2: Migration rates under varying boundary conditions
- With knowledge of (1), can isolate control of external boundary conditions.
- Effects of water and sediment discharges and gran size.
Experimental setup

Alluvial fan experiments
- Loose sand ($D_{50} = 0.52$ mm)
- Steady water flux
- Steady sediment flux
- Steady base level

Bufe et al., (2019), ESPL
Data analysis

Overhead photographs
- 1-minute interval
- Calculate average channel mobility

1 mm resolution topography without water
- 1-hour intervals
- Calculate channel geometry
Part 1: Constant boundary conditions

Hypothesis
Volumetric reworking rate is constant for constant boundary conditions:

\[M_V = L_c H_b M_L \]

- \(M_V \) = volumetric reworking rate
- \(L_c \) = Length of channel
- \(H_b \) = Bank height
- \(M_L \) = lateral migration rate
Part 1: Constant boundary conditions

Hypothesis
Volumetric reworking rate is constant for constant boundary conditions:

\[M_V = L_c H_b M_L \]

Expectation
Inverse scaling of migration rate and bank height:

\[M_L = \frac{M_V}{L_c H_b} \]

- \(M_V \) = volumetric reworking rate
- \(L_c \) = Length of channel
- \(H_b \) = Bank height
- \(M_L \) = lateral migration rate

Bufe et al., (2019), ESPL
Four experiments

Run 1: Constant sediment and water discharge
\[Q_s = 790 \text{ mL/s} \]
\[Q_w = 15.8 \text{ mL/s} \]
\[D = 0.52 \text{ mm} \]

Run 2: Constant sediment and water discharge
\[Q_s = 790 \text{ mL/s} \]
\[Q_w = 15.8 \text{ mL/s} \]
\[D = 0.52 \text{ mm} \]

Run 7: Constant sediment and water discharge
\[Q_s = 790 \text{ mL/s} \]
\[Q_w = 15.8 \text{ mL/s} \]
\[D = 0.52 \text{ mm} \]

Run 7: Constant sediment and water discharge
\[Q_s = 790 \text{ mL/s} \]
\[Q_w = 2.4 \text{ mL/s} \]
\[D = 0.52 \text{ mm} \]

85% lower
Autogenic variability of bank height

Unincised

Run time: 6h

Run time: 18h

Incised

Same experiment

Run time: 6h

8h difference

Run time: 18h

Bufe et al., (2019), ESPL
Part 1: Constant boundary conditions

Hypothesis
Volumetric reworking rate is constant for constant boundary conditions:

\[M_V = L_c H_b M_L \]

Expectation
Inverse scaling of migration rate and bank height:

\[M_L = \frac{M_V}{L_c H_b} \]

- \(M_V \) = volumetric reworking rate
- \(L_c \) = Length of channel
- \(H_b \) = Bank height
- \(M_L \) = lateral migration rate
Part 1: Constant boundary conditions

Hypothesis
Volumetric reworking rate is constant for constant boundary conditions:

\[M_V = L_c H_b M_L \]

Expectation
Inverse scaling of migration rate and bank height:

\[M_L = \frac{M_V}{L_c H_b} \]

- \(M_V \) = volumetric reworking rate
- \(L_c \) = Length of channel
- \(H_b \) = Bank height
- \(M_L \) = lateral migration rate

Theoretical inverse fit
\[M_L = 7.2 H_b^{-1} \]
\[r^2 = 0.78 \]

Best fit
\[M_L = 7.2 H_b^{-0.84} \]
\[r^2 = 0.81 \]
Part 1: Constant boundary conditions

Results
- bank height = first-order control on migration rate
- Inverse scaling between migration rate and bank height fits well
- Define a “bank-sediment yield”: $M_L H_b$

Hypothesis
- Bank-sediment yield encompasses all autogenic variability
- Bank-sediment yield is independent of other channel geometry parameters
 - Channel-system width
 - Channel slope
 - Water depth
 - $M_L = \text{lateral migration rate}$

Theoretical inverse fit:
$$M_L = 7.2 H_b^{-1}$$
$$r^2 = 0.78$$

Best fit:
$$M_L = 7.2 H_b^{-0.84}$$
$$r^2 = 0.81$$

Run 1 (High Qs) Run 5 (Low Qs)
Run 2 (High Qs) Run 7 (High Qs)
Hypothesis

- Bank-sediment yield encompasses all autogenic variability
- Bank-sediment yield is independent of other channel geometry parameters
 - Channel-system width
 - Channel slope
 - Water depth

Part 1: Constant boundary conditions

- Independent of channel width
- Independent of water depth
- Independent of channel slope
Hypothesis
• Bank-sediment yield encompasses all autogenic variability
• Bank-sediment yield is independent of other channel geometry parameters
 • Channel system width
 • Channel slope
 • Water depth

Part 1: Constant boundary conditions

Results for Part 1: constant boundary conditions
• Variations in bank height can explain variations in migration rates
• When bank heights are accounted for, none of the other main channel geometry parameters scale with migration rates. I.e. Bank sediment yield = constant
• \(\Rightarrow \) Volumetric rate of sediment reworking is constant under constant boundary condition.

Part 2: Varying boundary conditions
• Dimensional analysis with varying boundary conditions
• Test against compilation of experiments
Dimensional analysis

Governing variables
Governed variables

- Bank-sediment yield: \(H_b M_L \left[\frac{L^2}{T} \right] \)

From Part 1:

- Bank-sediment yield encompasses direct control of channel geometry on migration rate
- All other variations can be directly linked to external boundary conditions
Governing variables

- Bank-sediment yield: $H_b M_L \frac{L^2}{T}$
- Water discharge: $Q_w \frac{L^3}{T}$
- Sediment discharge: $Q_s \frac{L^3}{T}$
- Grain size: $D_{50} \ [L]$
Governing variables

- Bank-sediment yield: $H_b M_L \left[\frac{L^2}{T} \right]$
- Water discharge: $Q_w \left[\frac{L^3}{T} \right]$
- Sediment discharge: $Q_s \left[\frac{L^3}{T} \right]$
- Grain size: $D_{50} [L]$

Buckingham π theorem

- 2 parameters (π_1, π_2)
- $\pi_2 = f(\pi_1)$

Dimensionless parameters:

- $\pi_1 = \frac{D_{50} H_b M_L}{Q_s}$
- $\pi_2 = \frac{Q_s}{Q_w}$

From Part 1:

- Bank-sediment yield encompasses direct control of channel geometry on migration rate
- All other variations can be directly linked to external boundary conditions

Compilation of experiments

- Parameters varied in compiled experiments

Theory

For n variables and k physical dimensions:

- $n-k$ independent dimensionless parameters describe the physics of the system
- Each single parameter can be expressed as a function of the other parameters

Chosen parameters

- The parameters can be chosen as desired as long as they are (1) independent and (2) among them, include all governing variables.
Governing variables

- Bank-sediment yield: $H_bM_L \left[\frac{L^2}{T} \right]
- Water discharge: $Q_w \left[\frac{L^3}{T} \right]
- Sediment discharge: $Q_s \left[\frac{L^3}{T} \right]
- Grain size: $D_{50} [L]

Buckingham π theorem

- 2 parameters (π_1, π_2)
- $\pi_2 = f(\pi_1)$

Dimensionless parameters:

- $\pi_1 = \frac{D_{50}H_bM_L}{Q_s}$
- $\pi_2 = \frac{Q_s}{Q_w}$

Regression against compilation of experiments

- $M_L = k \frac{Q_w^{1.1 \pm 0.4} Q_s^{-0.1 \pm 0.4}}{D_{50}H_b}$

- $r^2 = 0.45$

- Wickert et al., 2013

- Run 1: Behind other data
Governing variables

- Bank-sediment yield: $H_b M_L \left[\frac{L^2}{T} \right]$
- Water discharge: $Q_w \left[\frac{L^3}{T} \right]$
- Sediment discharge: $Q_s \left[\frac{L^3}{T} \right]$
- Grain size: $D_{50} \left[L \right]$

Buckingham π theorem

- 2 parameters (π_1, π_2)
- $\pi_2 = f(\pi_1)$

Dimensionless parameters:

- $\pi_1 = \frac{D_{50} H_b M_L}{Q_s}$
- $\pi_2 = \frac{Q_s}{Q_w}$

\[M_L = k \frac{Q_{w}^{0.9 \pm 0.2} Q_s^{0.1 \pm 0.2}}{D_{50} H_b} \]

Including base-level changes – see Bufe et al., (2019), ESPL
Application to the field?

Adapted from Hickin & Nanson (1984), JHE

\[M_L = k \frac{Q_{w}^{0.9 \pm 0.2} Q_{s}^{0.1 \pm 0.2}}{D_{50} H_b} \]

Missing constraints on \(Q_s \)

\[y = 0.22x^{0.68} \]

\[R^2 = 0.62 \]
Application to the field?

\[M_L \sim k \, Q_s^{0.28} \]

\[M_L = k \frac{Q_w^{0.9 \pm 0.2} \, Q_s^{0.1 \pm 0.2}}{D_{50} H_b} \]
Key question

- What controls the rate of lateral channel migration in alluvial channels?

Aim

- Develop scaling between channel migration rates, the channel geometry and external boundary conditions
- Test the scaling against existing field data

Main finding

- Direct controls on migration rates, M_L
 - Strong influence of channel-bank height H_b
 - Strong influence of water discharge, Q_w
 - Weak influence of sediment discharge, Q_s

- $M_L = k \frac{Q_w^{0.9 \pm 0.2} Q_s^{0.1 \pm 0.2}}{D_{50} H_b}$

Presentation based on:
Bufe et al., (2019), Controls on the lateral channel-migration rate of braided channel systems in coarse non-cohesive sediment. ESPL (Link)