Latest scientific evolutions in the Crocus snowpack model

Matthieu Lafaysse¹, Marie Dumont¹, Rafife Nheili¹, Léo Viallon-Galinier¹, Carlo Carmagnola¹, Bertrand Cluzet¹, Mathieu Fructus¹, Pascal Hagenmuller¹, Samuel Morin¹, Pierre Spandre¹, François Tuzet¹, Vincent Vionnet¹,²

¹ CNRM, Centre d’Etudes de la Neige, Grenoble, France
² Environmental Numerical Research Prediction, Environment and Climate Change Canada, Dorval, QC, Canada
Outlook

- Basics principles of Crocus snowpack model

- New implementations available in last stable release:
 - Light Absorbing Impurities
 - Multiphysics
 - SYTRON (Blowing snow)
 - MEPRA (Mechanical stability)
 - Coupling with MEB (snow under forest)
 - Crocus-RESORT

- Works in progress
- Code access and conclusion
Basics

- Physical basis: **Heat diffusion** in a stratified snowpack

\[
\frac{\partial}{\partial t} \left(\rho(i) C_p(i) dz(i) T(i) \right) + L_f W(i) = \begin{cases}
Q_c(i) + L_f W_p + S_{abs}(i) + L_{net} + H + LE + P & \text{(surface)} \\
Q_c(i) + L_f W + S_{abs}(i) & \text{(internal layer)} \\
Q_c(i) + L_f W + S_{abs}(i) + Q_g & \text{(basal layer)}
\end{cases}
\]

Temperature change during time step

Phase change if \(T=0°C \)

Turbulent fluxes

Conduction heat flux

Liquid water percolation

Absorbed solar radiation

Ground-snow conduction

But many processes rely on **empirical parameterizations**
Main specificities of Crocus (compared to more standard snow schemes):

- **Lagrangian discretization**, maximum of 50 snow layers
- Explicit representation of **snow microstructure**

Prognostic variables: **Specific Surface Area** and grain **sphericity** with empirical evolution laws
New implementations available in last stable release

- Explicit evolution of **Light Absorbing Impurities** (Tuzet et al., 2017)

Black carbon

Dust
New implementations available in last stable release

- Explicit evolution of **Light Absorbing Impurities** (Tuzet et al., 2017)
 - Impact on **absorption of solar radiation**: more details in EGU2020-3633 in session AS2.10 https://doi.org/10.5194/egusphere-egu2020-3633

 → Highly variable process responsible for **large albedo differences between mid-latitude and polar areas**, not explained by the simple albedo parameterizations currently implemented in most Land Surface Models
New implementations available in last stable release

- Impurities scheme + TARTES optical scheme allow to compute **spectral visible and NIR reflectances**:
 - Comparisons with satellite reflectances
 - Perspective of data assimilation

Example: Near Infra Red reflectances (~ 860 nm) for MODIS, SENTINEL2 and SURFEX-Crocus ensemble simulations on topographic classes, Grandes Rousses area

Cluzet et al., 2020
Equifinality between parameterizations:

- 2 different model settings
 - Very different contributions to the energy balance
 - Very close simulated snow depths
 - Same statistical skill on various evaluation variables, long periods and various sites

Lafaysse et al., 2017
ESCROC (Ensemble System CROCus) **multiphysics** system
(Lafayse et al., 2017)

- Example for snowfall density parameterization

- 2 to 4 physical options for 8 key processes
 → **7776** possible members
 → 35 members selections

- Various applications:
 — **Climate projections** (Verfaillie et al., 2018)
 — **Data assimilation** (Cluzet et al., 2020)
 — **Process studies** (Dumont et al, submitted)

New implementations available in last stable release
New implementations available in last stable release

- Impurities scheme + Multiphysics
 - Impact of a dust deposition event accounting for the uncertainties of the other processes (Russian Caucasus)

Surface radiative effect due to impurities

Forced by additional observed dust deposition of 7 g/m² on March 23

Constant dust deposition close to climatology

Page 11 Dumont et al., submitted
New implementations available in last stable release

- SYTRON module for blowing snow
 - Only suitable for a specific geometry with topographic classes

Windward side

- Amount of snow redistributed in saltation and turbulent suspension
- Sublimation loss
- Mechanical evolution of snow grains

Leeward side

Erosion

Idealized crest

Snowpack simulated by Crocus

Accumulation

Vionnet et al., 2018
New implementations available in last stable release

- SYTRON module for blowing snow
 - New operational product for avalanche hazard forecasters

Vionnet et al., 2018
New implementations available in last stable release

- MEPRA module (Giraud et al., 1992): mechanical stability of the snowpack
 - Shear strength and penetration resistance computed as functions of Crocus snow density and microstructure
 - Expert rules to estimate hazard indexes of natural and accidental avalanche triggering based on the stress-strength ratio
 - Relevant for steep slopes (40°)
 - Transfer in SURFEX for optimization
New implementations available in last stable release

- Coupling with MEB (Boone et al 2017) for **snow-vegetation interactions**

 Saskatchewan, Canada (ESM-SnowMIP sites):
 Significant decrease of snow mass compared to model uncertainty, consistent with observations

Major bias at Col de Porte (French Alps, 1325 m)
not explained by other processes in the snowpack model
- Crocus-RESORT: optional module for grooming and snowmaking
 - Impact of **grooming** on density and microstructure
 - **Snowmaking** dependent on meteorological conditions and snow production strategy

New implementations available in last stable release

Spandre et al., 2016: Crocus-RESORT
New implementations available in last stable release

- Crocus-RESORT: optional module for grooming and snowmaking
- Climate change impact studies for economic viability of ski resorts

Frequency of critical seasons

- Without snowmaking
- With snowmaking

Water request

Spandre et al 2019

- Development of forecasting tools to optimize snowmaking and slope management (PROSNOW project)
Works in progress (for incoming versions)

- **Data assimilation** for Crocus (PhD B. Cluzet 2017-2020)
 - Algorithm: particle filter with localization
 - Variables: visible and NIR reflectances, snow depths, …
 cf. EGU2020-9037 in Session HS2.1.2:
 https://doi.org/10.5194/egusphere-egu2020-9037

- Consolidation of MEB-Crocus coupling (PhD L. Vincent 2019-2022)
 - Parameterizations of **intercepted snow**

- Numerical **optimizations** in Crocus: (Rafife Nheili, 2019-2020)
 - Required for **future operational system** for avalanche hazard forecasting (ensembles, high resolution, reflectances DA)
 - Required for an increasing use in **coupled mode**
 - Improvement of vectorization (less « IF » when possible)
 - Optimal management of loops layers/points with incomplete arrays
 - Reducing the spectral resolution of TARTES optical scheme
Code access and conclusion

- Full documentation: https://opensource.umr-cnrm.fr/projects/snowtools_git/wiki

- All developments described in this contribution are gathered in a unique and stable code version. It opens numerous new research opportunities by combining all these possibilities and your dataset.

- A publication in GMD is expected to be submitted by a few weeks (including a zenodo archive) to update the current reference (Vionnet et al, 2012).
References

