Automatic classification of seismo-volcanic signals at La Soufrière volcano, Guadeloupe

Alexis Falcin¹ (falcin@ipgp.fr), Jean-Philippe Métaxian¹,², Jérôme Mars³, Eléonore Stutzmann¹, Jean-Christophe Komorowski¹, Roberto Moretti¹,⁴

1- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
2- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
3- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
4- Observatoire volcanologique et sismologique de la Guadeloupe, Institut de physique du globe de Paris, F-97113 Gourbeyre, Guadeloupe
Data

- **La Soufrière**: Active volcano located on the island of Basse-Terre in Guadeloupe in the Lesser Antilles.

- **Last Major Eruption**: 1976-77, required the evacuation of more than 70,000 people for six months.

- **Recent Activity**: Lowest measured level in 1990 [1], increasing activity from 1992 to the highest level of seismic energy on April 27, 2018, with the strongest Volcano-Tectonic earthquake felt (M4.1) since the phreatic eruption of 1976 [2].

- **Detection/Classification**: Detection mostly automatic using a STA/LTA algorithm, Manual Classification

- **Three main classes**: Volcano-Tectonic (VT) events (78% of the dataset), Long-Period (LP) events (2%) and Nested (20%) events.
Method

Features

<table>
<thead>
<tr>
<th>Labeled Dataset</th>
<th>Unlabeled Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dataset Splitting</td>
<td></td>
</tr>
<tr>
<td>Train Dataset (\alpha %)</td>
<td>Test Dataset ((100-\alpha)%)</td>
</tr>
<tr>
<td></td>
<td>Validated Model</td>
</tr>
<tr>
<td>Trained Model</td>
<td>Validation</td>
</tr>
<tr>
<td></td>
<td>Performance Evaluation</td>
</tr>
</tbody>
</table>

Statistical Features

- Length: 1
- Mean: 2
- Standard deviation: 3
- Skewness: 4
- Kurtosis: 5
- i of central energy: 6
- RMS bandwidth: 7
- Mean skewness: 8
- Mean kurtosis: 9

Entropy Features

- Shannon entropy\(^a\): 10 to 12
- Rényi entropy\(^b\): 13 to 18

Feature set used to represent the signals [3]

Metrics

- **Accuracy** = \[
\frac{\# \text{ Good Prediction Class}_i}{\# \text{ Total True Class}_i}
\]

- **Precision** = \[
\frac{\# \text{ Good Prediction Class}_i}{\# \text{ Total Predicted Class}_i}
\]

- **Overall Accuracy** = \[
\frac{\# \text{ Good Prediction}}{\# \text{ Total Event Test Dataset}}
\]
Example of waveform filtered between 0.8-25 Hz, Spectrogram and Fourier Spectrum of Volcano-Tectonic events (top-left), Long-Period events (top-right) and Nested events (bottom) recorded at the station TAG on the vertical component.
Observatory Classification Performance

Classification using the data recorded by TAG station and labelled in 3 classes by the observatory

- **Volcano-Tectonic events**: High frequency content (between 5 and 20 Hz). A characteristic peak observed between 10 and 15 Hz for La Soufrière. Very impulsive P wave arrival. Brittle failure events associated to stress changes due to magma movements [4].

- **Long-Period events**: Fairly narrow spectral content around 4 Hz. Waveforms characterized by an emerging arrival of P waves, the S phase is not identifiable. Related to resonances of fractures, dykes, conduits or cavities during propagation of fluids (magmatic or hydrothermal) [5][6].

- **Nested events**: Small seismic packets in which events appears in the coda of each other. Not concomitant or precursor to a particular phenomenon [2]. Consist in a sequence of several seismic events with very short inter-times, with very often >6 seismic events in a short sequence (10s) [2][6]. Frequency content is pretty broadband (5-20 Hz) but most of the energy is in the same band as VT events. Source process not well understood. Events specific to La Soufrière volcano.

![Confusion matrix with a rate of 50-50% between the train and test dataset, mean score obtained after 10 trials](image-url)
New Classes

Example of Waveform filtered between 0.8-25 Hz, Spectrogram and Fourier Spectrum of Tornillo events (left) and Hybrid events (right) recorded at the station TAG on the vertical component.
Refined Classification Performances

<table>
<thead>
<tr>
<th>New Class</th>
<th>VT</th>
<th>LP</th>
<th>Nested</th>
<th>Tor</th>
<th>Hyb</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>VT</td>
<td>364</td>
<td>39</td>
<td>1</td>
<td>0</td>
<td>138</td>
<td>542</td>
</tr>
<tr>
<td>LP</td>
<td>15</td>
<td>36</td>
<td>1</td>
<td>26</td>
<td>8</td>
<td>86</td>
</tr>
<tr>
<td>Nested</td>
<td>125</td>
<td>22</td>
<td>28</td>
<td>2</td>
<td>40</td>
<td>217</td>
</tr>
<tr>
<td>Total</td>
<td>504</td>
<td>97</td>
<td>30</td>
<td>28</td>
<td>186</td>
<td>845</td>
</tr>
</tbody>
</table>

Hybrid events: Characteristics of both VT and LP events. High frequency impulsive arrival between 10-20 Hz. Coda dominated by lower frequency waves around 5 Hz. Halfway between VT and LP with fragile fracturing processes producing high frequencies and then the propagation of fluid responsible for resonance phenomena producing low frequencies [7]. Clear continuum between LP and hybrid [8]. Simple fracturing process with a very slow rupture velocity [9].

Tornillo events: or monochromatic long-period events are a subcategory of LPs. Emerging wave arrival, a duration of a few tens of seconds, an almost sinusoidal signal and a coda which decreases very slowly and almost linearly. Characteristic peak around 4 Hz. Resonance last longer than the LP. Self-oscillations of fluid filling a cavity. [10][11]

Confusion matrix with a rate of 50-50% between the train and test dataset, mean score obtained after 10 trials.
Features Importance

Feature importance in percentage for the classification with all the classes and classification one class vs other classes; the numbers of the labels refer to the feature table, the letters to the representation domain (T : time, F : frequency, C : quefrency)

Best features depend on the class we want to recognize
Cumulative Features Performance

Mean overall accuracies with the n most important features cumulated; Mean score obtained after 10 trials; Black line shows the mean score obtained with 102 features after 10 trials

18 features are enough to obtain mean score obtained with 104 features
Conclusion an Prospect

- Good recognition increased from 72 % to 84 % after data class reviewing, Machine learning helps to build a robust catalogue
- Able to recognize two classes hardly distinguishable by OVSG during daily data analysis protocol
- Poor Hybrid recognition suggests that this class is a continuum between LP and VT events
- The most important features depend on the class we want to recognize
- A well chosen subset of features (18/102) is sufficient to obtain substantially identical scores than with the whole feature set
- Use the Guadeloupe seismic network to make a multi-station analysis
- Feature exploration on another volcano
- Unsupervised classification to see how machine learning can discriminate the different signals
- Implement the model in observatory for real-time monitoring
References

1. Jessop et al., 2019, hal-02395880
3. Malfante et al., 2018, 10.1029/2018JB015470
4. Chouet et al., 2013, 10.1016/j.jvolgeores.2012.11.013
5. Chouet et al., 1988, 10.1029/JB093iB05p04375
6. Ucciani, 2015
7. Lahr et al., 1994, 10.1016/0377-0273(94)90031-0
8. Neuberg et al., 2000, 10.1016/S0377-0273(00)00169-4
9. Harrington et al., 2007, 10.1029/2006GL028714
10. Gomez et al., 1997, 10.1016/S0377-0273(96)00093-5
11. Konstantinou et al., 2015, 10.1016/j.pepi.2014.10.014