

<u>Automatic classification of seismo-volcanic signals</u> at La Soufrière volcano, Guadeloupe

Alexis Falcin¹ (falcin@ipgp.fr), Jean-Philippe Métaxian^{1,2}, Jérôme Mars³, Eléonore Stutzmann¹, Jean-Christophe Komorowski¹, Roberto Moretti^{1,4}

- 1- Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
- 2- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, 38000 Grenoble, France
- 3- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-Lab, 38000 Grenoble, France
- 4- Observatoire volcanologique et sismologique de la Guadeloupe, Institut de physique du globe de Paris, F-97113 Gourbeyre, Guadeloupe

Data

- <u>La Soufrière</u>: Active volcano located on the island of Basse-Terre in Guadeloupe in the Lesser Antilles.
- <u>Last Major Eruption</u>: 1976-77, required the evacuation of more than 70,000 people for six month.
- Recent Activity: Lowest measured level in 1990 [1], Increasing activity from 1992 to the highest level of seismic energy on April 27, 2018, with the strongest Volcano-Tectonic earthquake felt (M4.1) since the phreatic eruption of 1976 [2].
- <u>Detection/Classification</u>: Detection mostly automatic using a STA/LTA algorithm, Manual Classification
- Three main classes: Volcano-Tectonic (VT) events (78 % of the dataset), Long-Period (LP) events (2%) and Nested (20%) events.

Method

Features	Ref.	Features	Ref.		
Statistic Features	200.0000000	Shape descriptors features			
Length	1	Rate of attack	19		
Mean	2	Rate of decay	20		
Standard deviation	3	min/mean and max/mean	21, 22		
Skewness	4	Energy descriptors:	100		
Kurtosis	5	Signal Energy			
i of central energy	6				
RMS bandwidth	7	average	25		
Mean skewness	8	standard deviation	26		
Mean kurtosis	9	skewness	27		
		kurtosis	28		
Entropy Features		Specific values :			
		min	29		
Shannon entropy ^a	10 to 12	max	30		
Rényi entropy	13 to 18	13 to 18 i of min			
(1000年5) (1000年6)		i of max	32		
		threshold crossing rate	33		
		silence ratio	34		

Feature set used to represent the signals [3]

Metrics

$$Accuracy = rac{\# \ Good \ Prediction \ Class_i}{\# \ Total \ True \ Class_i}$$
 $Precision = rac{\# \ Good \ Prediction \ Class_i}{\# \ Total \ Predicted \ Class_i}$
 $Overall \ Accuracy = rac{\# \ Good \ Prediction}{\# \ Total \ Prediction}$

Total Event Test Dataset

Observatory Classes

Example of waveform filtered between 0.8-25 Hz, Spectrogram and Fourier Spectrum of Volcano-Tectonic events (top-left), Long-Period events (top-right) and Nested events (bottom) recorded at the station TAG on the vertical component

Observatory Classification Performance

Classification using the data recorded by TAG station and labelled in 3 classes by the observatory

- <u>Volcano-Tectonic events</u>: High frequency content (between 5 and 20 Hz). A characteristic peak observed between 10 and 15 Hz for La Soufrière. Very impulsive P wave arrival. Brittle failure events associated to stress changes due to magma movements [4].
- <u>Long-Period events</u>: Fairly narrow spectral content around 4 Hz. Waveforms characterized by an emerging arrival of P waves, the S phase is not identifiable. Related to resonances of fractures, dykes, conduits or cavities during propagation of fluids (magmatic or hydrothermal) [5][6].
- <u>Nested events</u>: Small seismic packets in which events appears in the coda of each other. Not concomitant or precursor to a particular phenomenon [2]. Consist in a sequence of several seismic events with very short inter-times, with very often >6 seismic events in a short sequence (10s) [2][6]. Frequency content is pretty broadband (5-20 Hz) but most of the energy is in the same band as VT events. Source process not well understood. Events specific to La Soufrière volcano.

		P	redicted Class	5	Accuracy	
		Nested	LP	VT	(%):	
True Class	Nested	32	4	72	29,63	
	LP	6	22	48	28,95	
	VT	16	4	251	93,25	
Precision (%):		59,26	73,33	67,65		
Overall Accuracy (%):				72,67 +/- 1,01		

Confusion matrix with a rate of 50-50% between the train and test dataset, mean score obtained after 10 trials

New Classes

Tornillo

Example of Waveform filtered between 0.8-25 Hz, Spectrogram and Fourier Spectrum of Tornillo events (left) and Hybrid events (right) recorded at the station TAG on the vertical component

Refined Classification Performances

		New Class					
		VT	LP	Nested	Tor	Hyb	Total
Old Class	VT	364	39	1	0	138	542
	LP	15	36	1	26	8	86
	Nested	125	22	28	2	40	217
	Total	504	97	30	28	186	845

New classes assigned after reviewing

			Accuracy				
		Nested	Hyb	LP	Tor	VT	(%):
True Class	Nested	14	0	0	0	1	93,33
	Hyb	0	59	7	0	26	64,13
	LP	0	4	42	1	2	85,71
	Tor	0	0	1	13	0	92,86
	VT	1	22	1	0	227	90,44
Precision (%): 93,33 69,41 8			82,35	92,86	88,67		
Overall Accuracy (%):				83,95 +/- 1,50			

- Hybrid events: Characteristics of both VT and LP events. High frequency impulsive arrival between 10-20 Hz. Coda dominated by lower frequency waves around 5 Hz. Halfway between VT and LP with fragile fracturing processes producing high frequencies and then the propagation of fluid responsible for resonance phenomena producing low frequencies [7]. Clear continuum between LP and hybrid [8]. Simple fracturing process with a very slow rupture velocity [9].
- Tornillo events: or monochromatic long-period events are a subcategory of LPs. Emerging wave arrival, a duration of a few tens of seconds, an almost sinusoidal signal and a coda which decreases very slowly and almost linearly. Characteristic peak around 4 Hz. Resonance last longer than the LP. Self-oscillations of fluid filling a cavity. [10][11]

Confusion matrix with a rate of 50-50% between the train and test dataset, mean score obtained after 10 trials

Features Importance

Feature importance in percentage for the classification with **all the classes** and classification **one class vs other classes**; the numbers of the labels refer to the feature table, the letters to the representation domain (T: time, F: frequency, C: quefrency)

Best features depend on the class we want to recognize

Cumulative Features Performance

Mean overall accuracies with the n most important features cumulated; Mean score obtained after 10 trials; Black line shows the mean score obtained with 102 features after 10 trials

18 features are enough to obtain mean score obtained with 104 features

Conclusion an Prospect

- Good recognition increased from 72 % to 84 % after data class reviewing, Machine learning helps to build a robust catalogue
- Able to recognize two classes hardly distinguishable by OVSG during daily data analysis protocole
- Poor Hybrid recognition suggests that this class is a continuum between
 LP and VT events
- The most important features depend on the class we want to recognize
- A well chosen subset of features (18/102) is sufficient to obtain substantially identical scores than with the whole feature set
- Use the Guadeloupe seismic network to make a multi-station analysis
- Feature exploration on another volcano
- Unsupervised classification to see how machine learning can discriminate the different signals
- Implement the model in observatory for real-time monitoring

References

- [1] Jessop et al., 2019, hal-02395880
- [2] Moretti et al., 2020, <u>10.1016/j.jvolgeores.2020.106769</u>
- [3] Malfante et al.,2018, <u>10.1029/2018JB015470</u>
- [4] Chouet et al., 2013, <u>10.1016/j.jvolgeores.2012.11.013</u>
- [5] Chouet et al., 1988, <u>10.1029/JB093iB05p04375</u>
- [6] Ucciani, 2015
- [7] Lahr et al., 1994, <u>10.1016/0377-0273(94)90031-0</u>
- [8] Neuberg et al., 2000, 10.1016/S0377-0273(00)00169-4
- [9] Harrington et al., 2007, 10.1029/2006GL028714
- [10] Gomez et al., 1997, <u>10.1016/S0377-0273(96)00093-5</u>
- [11] Konstantinou et al. , 2015, <u>10.1016/j.pepi.2014.10.014</u>