The role of gases in an arsenic contaminated aquifer: Van Phuc, Vietnam

Alexandra Lightfoot
Supervisor: Rolf Kipfer
Aim: determine flow dynamics of groundwater in a region where Arsenic contamination of groundwater is an issue.
Background: Noble gases (NG) as tracers for groundwater flow

- Similarly to other atmospheric gases, NG’s enter the water cycle through gas partitioning at the air/water interface.

- NG’s have typical concentrations known as their “air saturated water” (ASW) concentrations for a specific Temperature, Salinity and Pressure (Henry’s Law).

- The five most well known NG’s are He, Ne, Ar, Kr and Xe. They are extant in different abundances in our atmosphere.

- Noble gases can be used as environmental tracers because they are biogeochemically inert.

- The only way to alter noble gas concentrations is by PHYSICAL PROCESSES.
Sampling/Analysis with the miniRUEDI

- The MiniRUEDI\(^1\) is a portable mass spectrometer, able to measure both noble and reactive gas concentrations in groundwater including: He, Ar, Kr, H\(_2\), CH\(_4\), CO\(_2\), O\(_2\), N\(_2\).

- Continuous water flow is necessary for operation.

- Analysis was made of gases in groundwater from existing wells in the village.

- 21 wells were analysed in-field.

\(^1\) https://gasometrix.com/; A Portable and Autonomous Mass Spectrometric System for On-Site Environmental Gas Analysis: Matthias S. Brennwald et. al. ES&T 2016 50 (24), 13455-13463, DOI: 10.1021/acs.est.6b03669
The ‘transition zone’ (TZ) is an important feature of the field site.

The TZ is characterized by contrasting redox conditions, a common feature at aquifer boundaries (e.g. Holocene and Pleistocene, as is here).

Water flows from contaminated Holocene aquifer into the uncontaminated Pleistocene aquifer².

Results 1.1

- Simultaneous measurements of noble and reactive gas concentrations suggest **in-situ degassing** of Ar and Kr via oversaturation of CH$_4$.

- **Degassing means:** Saturation of e.g. CH$_4$ or CO$_2$ in groundwater \rightarrow gas bubble formation (+escape) \rightarrow removal of noble gases from water phase into the gas bubble \rightarrow depletion signature seen in NG analysis.

Degassing is the ONLY physical process that can explain depletion of the NG’s Ar and Kr.

Presence of a free gas phase within the aquifer affects groundwater flow and residence times; information necessary to determine As evolution.
Results 1.2

✓ 4He doesn’t show degassing like Ar, Kr! WHY?

✓ 4He instead increases with increasing CH$_4$ concentrations.

✓ High 4He signature indicates longer residence time (~1000’s years); it is the only NG that is additionally affected by radiogenic decay so can accumulate where groundwater flow is slowed.

→ Flow inhibition due to gas bubbles mean radiogenic 4He can accumulate.

→ Input of 4He from a second water source?

4He concentrations increase with increasing CH$_4$ in the same wells where Ar and Kr show severe depletion.
Results 2

As concentrations vs. total dissolved gas pressure (TDGP)

- TDGP is the total pressure of all gases in the groundwater as measured by the miniRUEDI at sampling.
- If values exceed 1 atm, there is gas production within the aquifer, when related to high reactive gas concentrations.
- Arsenic concentrations correlate to gas production within the aquifer. Predominantly, this is related to CH$_4$, but is also shown in wells with high N$_2$ values, for example, near the river bank.
- Two different mechanisms for As mobilisation at the river and in the TZ.

Wells in the TZ and follow the same curve of increasing As with increasing TDGP, which, is a result of high CH$_4$. The well near the river, N$_2$ is the dominant gas component contributing to total TDGP.
A conceptual model should account for these three points:

Groundwater flow seems complex in nature - could this complexity relate to patchy As distributions?

Is As accumulating in areas where groundwater flow slows as a result of in-situ CH$_4$ gas bubble production?

Where does the CH$_4$ go?
Schematic of groundwater flow in the TZ of the field site. Water tends to deviate around the CH$_4$ bubbles. Within the ‘slow-flow’ TZ, Ar, Kr, and N$_2$ show degassed signatures from the groundwater, while 4He accumulates indicating a longer residence time and/or input from an additional water source.
Conclusions

- By combining noble and reactive gas measurements, we can come up with a conceptual model of groundwater flow within the transition zone of this As contaminated field site.

- Results show depletion of Ar, Kr and N\(_2\) relative to increasing CH\(_4\) concentrations:
 - An indicator for degassing and presence of an in-situ CH\(_4\) gas phase within the aquifer, which subsequently affects groundwater flow.

- \(^4\)He concentrations show the opposite affect; they increase with increasing CH\(_4\) concentrations. This could mean:
 - Flow inhibition caused by the CH\(_4\) gas bubbles means radiogenic \(^4\)He can accumulate significantly.
 - Addition of an older water component of high \(^4\)He content

- Details on groundwater flow are necessary to fully understand the evolution of As movement in contaminated aquifers.

- Additionally, high TDGP, which is attributed to high CH\(_4\) in the transition zone, shows there is a link between As concentrations and CH\(_4\) production.
AdvectAs project team!