Simulating extreme sea levels at the Baltic Sea coast from synthetic cyclones

Jani Särkkä, Jani Räihä, Matti Kämäräinen and Kirsti Jylhä
Finnish Meteorological Institute
7.5.2020
Sea level affected by wind, air pressure and seiches

Mean sea level from water flow through the Danish Straits

Negligible tides

Mean depth 54 m

Highest maxima in the ends of bays

Finnish tide gauges (shown on the map) have 100-year time series

Highest observed maxima at Hamina (197 cm) and Kemi (201 cm)
Method to simulate sea level extremes

- Aim is to study coastal sea level maxima due to wind and air pressure
- How severe coastal flooding could occur in the present climate, if the weather conditions are optimal?
- Looking for the cyclone tracks that cause the highest storm surges
- Generate an ensemble of synthetic cyclones (moving pressure fields)
- Calculate the surface winds from the pressure field
- Sea levels are simulated with a barotropic numerical model, having surface wind and pressure as forcing
- Large ensemble of cyclones with varying tracks is used as forcing to sea level model
Cyclone generation

- Pressure distribution has Gaussian shape
- Cyclone moves with constant velocity from given point
- The maximum depth of the pressure distribution is constant
- Surface winds obtained from corrected geostrophic winds
- Correction based on reanalysis data
Preliminary results and future studies

- Storm surge maxima 200 cm at Kemi, 240 cm at Hamina
- Mean water level of the Baltic Sea (up to 100 cm) should be added to storm surge
- Over 300 cm sea levels are possible when storm surge coincides with high mean sea level
- Probabilities of maxima are not assessed with this method (no weighting for the cyclone tracks)
- Further simulations will be made based on an ensemble of cyclones
- The high sea level extremes for different locations at the coast are identified
- The effects of low pressure intensity, speed, direction and point of origin on the sea level extremes on the coast are studied