Strike-slip enables subduction initiation beneath a failed rift: new seismic constraints from Puységur Margin, New Zealand

Brandon Shuck, Harm Van Avendonk, Sean Gulick, Mike Gurnis, Rupert Sutherland, Joann Stock, Jiten Patel, Erin Hightower, Steffen Saustrup, Thomas Hess

European Geosciences Union (May 2020)
Forced Subduction Initiation at Incipient Puységur Trench, New Zealand

- The best place to study forced subduction initiation in-situ! AUS-PAC plate boundary experienced rifting to strike-slip to subduction since ~45 Ma
- Past plate motion is well constrained, Evidence of quaternary adakite volcanism, Active Benioff zone to ~150 km, Deep ocean trench (up to 6 km)

February-March 2018 using R/V Marcus G. Langseth
- 1251 km of multichannel seismic data
- Two coincident OBS lines
- Multibeam bathymetry
- 3.5 KHz CHIRP
- Magnetics/Gravity data
- Post-cruise seismic processing of trace editing, noise & multiple suppression, velocity analysis, pre-stack depth migration

Results
- Initial results in Gurnis et al. (2019) EPSL
- Stratigraphic evolution of Solander Basin in Patel et al. (in press), Basin Research
- Tectonic/structural analysis of Puységur Margin presented here
Rough incoming oceanic lithosphere
- No apparent sediment accretion (erosion ?)
- Basement outcrops along Puysegur Ridge
- Large velocity contrast across axial valley
- Solander Basin has continental rift blocks
- Syn-rift sediment ~1.5 km thick
- Evidence for rift-related magmatism and high velocity (>7.1 km/s) lower crust
• Oceanic fabric reactivated close to trench
• Accretionary prism with deformed sediments
• Large velocity contrast across “Snares Zone”
• Solander Basin simple-shear tilted rift blocks
• Less evidence for rift-related magmatism
• Crust is thickest beneath Puysegur Ridge and thins eastward towards Campbell Plateau
Tectonic Summary

- **North**: Wide, thick oceanic sliver.
- **South**: Widest rift basin, greatest extension and magmatism.

Legend
- Continental crust
- Subcontinental mantle
- Transitional crust
- Oceanic crust
- Suboceanic mantle
- Oceanic sliver
- Subducting sediments
- Accreted sediments
- Slope sediments
- Rift volcanism
- Post-thrust sediments
- Syn-thrust sediments
- Post-rift sediments
- Syn-rift sediments

Notes
- Stride-slip severed failed rift and juxtaposed buoyant continental crust from rift phase with thin and dense oceanic lithosphere.
- Distributed extension and later localized thrusting.
- Extended continental crust in upper plate – rifting never proceeded to breakup & seafloor spreading.
- Reverted structures recorded change from extension to compression associated with subduction initiation.
- Distributed extension and later localized thrusting.
- At present, northern margin is transitioning to mature subduction zone. Southern margin is still incipient and experiencing forced uplift.
- Subduction initiated in the north at ~15 Ma near Puysegur Bank and gradually migrated southward.

SISIE-2
- Thick pile of accreted sediments.
- High topography on rift blocks, localized extension.
- Subduction initiation took advantage of buoyancy contrasts and older fault structures.

SISIE-1
- No accreted sediments, erosion?
- Widest rift basin, greatest extension and magmatism.
- Subduction initiated in the north at ~15 Ma near Puysegur Bank and gradually migrated southward.