

Changing Hydrologic Exchanges in a Warming World

Main author: *Kirsten Findell – GFDL*Presenting author during live chat:
Ruud van der Ent – TU Delft

What is the magnitude of each of these terms in the global hydrological cycle?

How will they change in a warming world?

We can address these questions with water tracking algorithms

- e.g., WAM-2layers, van der Ent et al. (2010 WRR, 2014 ESD)
- GFDL's ESM2G (Dunne et al., 2012, 2013)

Findell, K. L., Keys, P. W., van der Ent, R. J., Lintner, B. R., Berg, A. and Krasting, J. P.: Rising Temperatures Increase Importance of Oceanic Evaporation as a Source for Continental Precipitation, Journal of Climate, 32(22), 7713–7726, dx.doi.org/10.1175/JCLI-D-19-0145.1, 2019.

Precipitation tracked backwards

• The continental precipitation recycling ratio, ρ_c ,

$$\rho_c(t, x, y) = \frac{P_c(t, x, y)}{P_c(t, x, y) + P_o(t, x, y)} = \frac{P_c(t, x, y)}{P_{TOT}(t, x, y)}$$

(f) ESM2G End-20thC continental precip recycling ratio $ho_{
m c}$

Evaporation tracked forwards

• The continental evaporation recycling ratio, ε_c ,

$$\varepsilon_c(t, x, y) = \frac{E_c(t, x, y)}{E_c(t, x, y) + E_o(t, x, y)} = \frac{E_c(t, x, y)}{E_{TOT}(t, x, y)}$$

(e) ESM2G End-20thC continental evap recycling ratio ϵ_c

(b) End20thC - End19thC continental precip recycling ratio $\rho_{\rm c}$

(d) End21stC - End20thC continental precip recycling ratio ρ_c

Continental moisture recycling decreases with warming

With a simple prototype model, we can show that as long as $\Delta E_{ocean} > \Delta E_{land}$ as $\Delta T \uparrow$, then continental moisture recycling ratios must go down.

Soil moisture limitation on land, then, means that $\rho_{\rm c}$ must decrease in a warming world.

Changes in Hydrologic Exchanges

ESM2G's near-global (60°S-80°N) values in 1000 km³/yr

As global temperatures warm, both recycling ratios get smaller: the ocean imprint on continental hydrology gets bigger

Ocean

Continental moisture recycling decreases by 2-3% with each degree of increase in global temperatures

Ocean

Eo (% of Eland)

End of 20th Century

Continent