Uncertainty Propagation and Stochastic Interpretation of Shear Motion Generation due to Underground Chemical Explosions in Jointed Rock

S. Ezzedine, O. Vorobiev, A. Pitarka, J. Wagoner, T. Antoun, W. Walter

Lawrence Livermore National Laboratory
Livermore, California, USA
ezzedine1@llnl.gov
Outline

- **SPE Modeling framework [MF]**
 - Statement of the problem
 - Modeling flowcharts
 - Adaptation of SPE MF to DAG

- **Near Field**
 - Source
 - Wave propagation
 - SPE lessons learned
 - DAG-1 & -2 lessons learned

- **Findings & lessons learned**
 - Near-Field
 - Far-Field
 - Discrimination
Motivation of current efforts: Discriminate between anthropogenic, natural & nuclear sources

- NRC released in 03/’12 a report on CTBT technical issues for USA:
 - Finding 2-4: “Technical capabilities for seismic monitoring have improved substantially in the past decade…”
 - Finding 2-6: “Seismic technologies for nuclear monitoring have the potential to improve event detection, location, and identification substantially over the next years to decades.”
- Recommendation 2-4: “The United States should renew and sustain investment in seismic R&D efforts to reap the rewards of … source models … to enhance underground explosion monitoring…”

- NEED: capability to predict observed signals from an arbitrary source to arbitrary receivers
 - Understand shear motion generation
 - Build source models that predicts P- & S- waves (end-to-end)
 - Assess geological and physical uncertainty on earth response
 - Discriminate between sources for monitoring
- NAS’s 2006: Computational seismology has entered a new era
 - Focused efforts to develop validated documented software for seismological computations should be supported, with special emphasis on HPC
 - Education of seismologists in HPC
 - Collaborations between seismologists & CSE should be strengthened
 - Infrastructure for archiving, disseminating, and processing large volumes of seismological data should be expanded.

Cutaway view depicting many of the different disturbances recorded by sensors worldwide. Sources of disturbances include: volcanic eruptions, earthquakes, machinery vibrations, nuclear tests, mining and rock bursts and blasts, terrorist acts, atmospheric explosions, and asteroid ground and ocean impacts. [Modified from William Walter]
Motivation of current efforts: Discriminate between anthropogenic, natural & nuclear sources

Seismic measurements of historic nuclear tests have some limitations. How do P/S ratios separate explosions from earthquakes and can we model this?

Declared DPRK nuclear test seismic signals at publicly available seismic station MDJ about 350 km north

- Oct 2006
- May 2009
- Feb 2013
- Jan 2016
- Sep 2016
- Sep 2017

Comparison of Earthquake and Explosion at ICNCN

Continue exploring methodologies to improve earthquake-explosion discrimination using regional amplitude ratios such as P/S. Understand shear motion generation is essential to building source models that predict P- & S- waves and their ratios.

Properties of 3 seismic events in 09/2017 in the north Korean Peninsula from moment tensor inversion [Han et al. undated]
Near- & Far-field processes: We are dealing with very daunting and complex non-linear & linear phenomena

Far-field observations = Source Region Effects + Free Surface Effects + Path Effects (monitoring distances) = (Rock fabric & properties) + (Spall, damage) + (Conversions)

Our goal is to understand the genesis of shear motions in jointed media (granite) and porous media (alluvium) using state-of-the-art HPC numerical models and data obtained from the Source Physics Experiments conducted at NNSS.
The Multi-Institutional Source Physics Experiments (SPE) Phase I (Granite) vs. Phase II (Alluvium)

SPE initially focuses on granite, a relatively strong media with foreign analogs, and where there are still unexplained results from U.S. 1960’s tests – site of 3 nuclear tests.

SPE Phase II focuses on dry alluvium: no pre-existing joints and a relatively weak media with foreign analogs and a natural reduction of seismic signals by up to an order of magnitude (hence shots are an order of magnitude larger). There are 9 nuclear tests within 1 km of emplacement hole which is 96” diameter, 1400’ deep drilled in 1983.
Building Block: Structural, geomechanical & geophysical characterization of uncertainties

<table>
<thead>
<tr>
<th>SPE Phase I (SPE) site characteristics</th>
<th>VS</th>
<th>SPE Phase II (DAG) site characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Granite</td>
<td></td>
<td>➢ Alluvium</td>
</tr>
<tr>
<td>• Fractures discontinuities</td>
<td></td>
<td>• Porous inclusions</td>
</tr>
<tr>
<td>• Fracture size</td>
<td></td>
<td>• Inclusion size</td>
</tr>
<tr>
<td>• Density</td>
<td></td>
<td>• Connectivity (continuity)</td>
</tr>
<tr>
<td>• Orientation…</td>
<td></td>
<td>• Stratification…</td>
</tr>
<tr>
<td>• Spatial variability of properties</td>
<td></td>
<td>• Spatial variability of properties</td>
</tr>
</tbody>
</table>

SPE I, geological observations

Synthetic fractured (jointed) media

SPE II, Legacy U2EZ observations

Synthetic porous alluvial media
SPE modeling framework to simulate & predict under conditions of uncertainty

Flow chart of UQ and estimation for SPE/DAG experiments

Deconstruct the problem into two regimes/domains. Reconstruct the problem via a source box as a liaison.
SPE involves coordinated team efforts & model updates as data become available

Near-Field

- Characterization
 - StoTran
 - Geody-L
 - Near Field predictions

- Acoustics
 - Geody-L
 - Observations

- Field campaign
 - Pre/Post LiDAR
 - Acoustics
 -
 - Accelerometers

Far-Field

- Characterization
 - StoTran
 - WPP SW4
 - Acoustics

- Observations
 - Acoustics
 -
 - Accelerometers

- Field campaign
 - Pre/Post LiDAR
 - Acoustics
 -

The process of model updates as data become available has been proven fruitful when we executed DAG1, DAG2 etc.
Our unique E2E, S2R, coupled wave propagation capabilities is being adapted to DAG

HPC enables quantifying the effects of geologic heterogeneities on material response during wave propagation under conditions of uncertainties.

Typical dimensions
- joint aperture ~1 mm
- joints spacing ~1 m
- source size ~1 m

Resolution requirements
- 20-50 million elements
- 100-200 million zones

Uncertainty propagation
- ~500s runs a set
- ~10s of parameters

HPC requirements
- ~10% of one cluster
- ~17% of temp storage
- ~3.5 Million CPU-Hrs

NF: SPE4'/5/6 is 50x SPE3
- 250K joints vs 15K joints
- ~1.5 km for SPE4'/5/6
- ~300 m
- ~10m

Far-field
Near-field

HPC enables quantifying several times for uncertainty quantification

2200 CPU x 12 HRS = 26,400 CPU-HRS
3200 CPU x 16 HRS = 38,400 CPU-HRS

Alluvium
Joints
Granite
Geodyn MM calibration to NTS (NNSS)

• Compiled several hardrocks and alluvium shots conducted at NTS

• Single regime for hard rocks
• Two main regimes when dealing with alluvium:
 – Nonlinear (near ranges)
 – Linear (far ranges)

• We recovered Peak-Velocity vs. Scaled-Range correlations
• We have seen similar behavior for Peak-Pressure vs. Scaled-Range

Granite/Geodyn (■)
NTS/AL (●)
NTS/HR(◼, ●…)
Alluvium/Geodyn (●)
Perret & Bass (1975)

Peak Velocity (m/s)
Scaled Range (m/kT^{1/3})
SPE1-5 instrumentation and gage locations

Focus on SPE4' and SPE5

Side Radial Cross-section View

Courtesy of NSTEC, DTRA & LANL
Example of SPE4P predictions complete data sets
Example of SPE5 predictions complete data sets
SPE6 Peak velocity attenuation in agreement with previous SPE shots

Higher radial velocity in direction #23 (similar to #9, #11 direction focusing for SPE3/SPE5)
SPE6 is the shallowest shot in the SPE-I series. SPE6 compares well with Legacy shots.

Historical data (e.g. HH B11 & B12) shows T motions ~ R motions.

Similar high T-motions where observed in other geological settings.

SPE6 is the ‘only’ shallow shot in the series, we ought to conduct more shallow shots to:

a) explore the unusual observations,

b) challenge scaling laws and, more importantly,

c) explore effects of weathering and layering on the overall response of the system.
Surface gauges around GZ are expected to exhibit ~2.5m/s (1m/s for SPE3/5) vertical velocity with clear spall.

- Peak acceleration is ~100 Gs +/- ~30 Gs
- Peak velocity is 3.5 m/s +/- 1.25 m/s
- Peak displacement 27 cm +/- 9 cm (~40cm)
- Residual displacement 15 cm +/- 5 cm (~20cm)
- Spall zone ~ 40-100 m (~60m)

[Courtesy of Emily Schultz-Fellenz, LANL]
Alluvium displays a hierarchy of scales of variability of the geophysical attributes

Alluvium encompasses a hierarchy of scales of variability

Simple approach: two materials, one is weak alluvium (A) the other one is strong (B)
Realistic approach: continuum parameterized alluvium model which describes both A and B and everything in between
Final Drilling PLAN: as of DEC 24, 2016

DAG TEST PAD

<table>
<thead>
<tr>
<th>BH</th>
<th>Lat</th>
<th>Long</th>
<th>Depth (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N10</td>
<td>37.114736°</td>
<td>-116.069307°</td>
<td>1297</td>
</tr>
<tr>
<td>N20</td>
<td>37.114837°</td>
<td>-116.069342°</td>
<td>1297</td>
</tr>
<tr>
<td>N40</td>
<td>37.115002°</td>
<td>-116.069396°</td>
<td>1297</td>
</tr>
<tr>
<td>N80</td>
<td>37.115342°</td>
<td>-116.069537°</td>
<td>1297</td>
</tr>
<tr>
<td>E10</td>
<td>37.114649°</td>
<td>-116.069174°</td>
<td>1297</td>
</tr>
<tr>
<td>E20</td>
<td>37.114658°</td>
<td>-116.069038°</td>
<td>1297</td>
</tr>
<tr>
<td>E40</td>
<td>37.114674°</td>
<td>-116.068824°</td>
<td>1297</td>
</tr>
<tr>
<td>E80</td>
<td>37.114722°</td>
<td>-116.068378°</td>
<td>1297</td>
</tr>
<tr>
<td>SW10</td>
<td>37.114594°</td>
<td>-116.069340°</td>
<td>1297</td>
</tr>
<tr>
<td>SW20</td>
<td>37.114516°</td>
<td>-116.069406°</td>
<td>1297</td>
</tr>
<tr>
<td>SW40</td>
<td>37.114374°</td>
<td>-116.069547°</td>
<td>1297</td>
</tr>
<tr>
<td>SW80</td>
<td>37.114092°</td>
<td>-116.069837°</td>
<td>Tbase...</td>
</tr>
</tbody>
</table>

From DAG Science Review
Density, Gamma Ray & Resistivity (e.g. SW10)

Thanks to Maggie Townsend (MSTS)
- Full characterization of all 12 wells
- Caliper
- Gamma Ray
- Density
- Resistivity
- High resolution

Using the new well characterization
- Directional spatial variability
- Horizontal spatial variability
- Single variable vs. multiple

We started building the step stone of our simulation framework
- Bayesian stochastic generation of variable of interest (e.g. Ezzedine ‘90s, ‘00s)
- Judicious sampling methods of the probabilistic space
- Alluvium bring several challenges

Our goals
- Minimize aleatoric uncertainties to single the epistemic ones
- Enhance codes for UNE monitoring
Vertical spatial correlation of Density: Hierarchy of scales & non stationarity

10m Ring: Strong anisotropy between directions (spherical to affine-like)
20m Ring: Isotropy between directions (strong affine-like)
40m Ring: Isotropy between N/SW affine-like in E direction
80m Ring: Almost isotropy between N/E spherical in SW direction

- There is a hierarchy of scales between Density, Gamma Ray, and Induction Resistivity
- Nested scale \(\lambda_\gamma \leq \lambda_{GR} \leq \lambda_R \): higher continuity between R lenses than GR lenses than density
- We will use Joint Probability Distribution (of all 3) to generate conditional simulations (of all 3) for NF wave simulations and predictions
- All data is honored at each location which reduces the number of realizations
Motions recorded above DAG-1 showed delayed arrivals of shear waves in all directions (N, E, SW). We are moving beyond Perret & Bass ‘EOS’.

DAG1 measurements cluster well along the new material model prediction. DAG2 however has a larger scatter than expected (canisters may not be properly gauged, residual movement from DAG1, weak grout).

DAG1 velocities registered at DAG2 & DAG3 shot levels showed delayed shear wave arrivals.
Peak Velocity and Peak Acceleration at SGZ for DAG1 & DAG2. DAG (stronger) alluvium favors the upper bound estimates.

DAG1: average 18 times P&B +/- 5.5 ~ 23.5 times at most. DAG2: average 6.5 times P&B +/- 3.25 ~ 9.75 times at most (Obs 10x)
Blind predictions = 110 m spall

BLUF surface accelerometers
The entire array (out to 90 m) spalled for about 0.14 s.
(Jesse Bonner)
Summary of the seismic monitoring implications being studied in the Source Physics Experiments

• Near-Field wave propagation:
 – Joints are the main cause of shear motion generation.
 – SPE3 framework has been applied to SPE4', SPE5 and more recently SPE 6.
 – Same framework has been adapted to DAGs and applied to DAG-1 through DAG-4.
 – Several UQ & SA studies have been conducted (petrophysical, geological).
 – We have conducted similar analyses for surface expression and acoustic response (not shown here).

• Far-Field wave propagation:
 – Source related effects are primary mechanisms of shear motion generation.
 – Secondary sources of shear motions are:
 ▪ Conversions (i.e. P-S & P-Rg) and
 ▪ Path effects on basin generated S waves.
 – Current model provides a platform for performing sensitivity analysis of ground motion.
 – Local wave propagation effects are source-depth dependent.

• Implication for source discrimination:
 – P-wave spectra – affects yield estimation and discrimination.
 ▪ Overall level, corner frequency, high-frequency roll-off affected by media.
 ▪ Dry porous media, over-buried and small explosion not well fit by existing models – new ones underway.
 – S-wave spectra – affects P/S discrimination.
 ▪ Transverse waves in near-field/high frequency from joints and material heterogeneity.
 ▪ S-wave generation in far-field, monitoring frequencies from scattering and conversion.
 ▪ Physics-based modeling under development and starting to match observations.
 ▪ Local P/S much less effective as a discriminant without azimuthal averaging.
Acknowledgements: The Source Physics Experiments (SPE) would not have been possible without the support of many people from several organizations. The authors wish to express their gratitude to the National Nuclear Security Administration, Defense Nuclear Nonproliferation Research and Development (DNN R&D), and the SPE working group, a multi-institutional and interdisciplinary group of scientists and engineers. This work was done by Lawrence Livermore National Laboratory under award number DE-AC52-06NA25946.

“The views expressed here do not necessarily reflect the views of the United States Government, the United States Department of Energy, the National Nuclear Security Administration, the Lawrence Livermore National Laboratory, the Los Alamos National Laboratory, the Sandia National Laboratory and the Mission Support and Test Services”

LLNL-PRES-776098-DRAFT