Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants

Ulrike Dusek¹, Roland Vernooij², Anupam Shaikat¹, Chenxi Qiu³, Elena Popa³, Patrik Winiger², Nick A. J. Schutgens², Guido R. van der Werf²

© U. Dusek, All rights reserved

¹ Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, the Netherlands
² Earth and Climate Cluster, Faculty of Earth and Life Sciences, VU University Amsterdam, the Netherlands
³ Institute for Marine and Atmospheric research Utrecht, Utrecht University, the Netherlands
Savannah Fires in Africa

C₃ Plants: Trees, shrubs

C₄ Plants: Savannah grass

Carbonaceous Aerosols
- Elemental Carbon (EC)
- Organic Carbon (OC)

How much of the emissions stem from C₃ vs C₄ plants?

CO₂

CO
13C for distinguishing C3 and C4 plants

2 stable carbon isotopes:

12C

13C (~ 1%)

$^{13} R = ^{13} C/^{12} C$

$\delta^{13} C = \frac{^{13} R_{Sample} - ^{13} R_{VPDB}}{^{13} R_{VPDB}} \times 1000\%$

C3 plants contain less 13C than C4 plants
Research Question

“How do C_3 and C_4 plants in the savannah fires contribute to the ORGANIC CARBON?

Lab Experiments
- How does delta value of OC fit with the 13C signature of C_3 (willow) and C_4 plants (corn)?
- What is the impact of the proportions of C_3 and C_4 plants in mixed fuels?

Field Experiments
- What is the source contribution?
Methodology

Aerosol sample Collection

Filter preparation
Biomass burning & sample collection
Sample preservation

Aerosol sample Measurement
Sunset OC/EC analyzer
δ¹³C-Thermogram system

Data Calculation & Analysis
Overview of African biomass fuels

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Biomass Burnt</th>
</tr>
</thead>
<tbody>
<tr>
<td>FE1</td>
<td>C$_3$ plants (27.8‰), savanna grasses (12.9‰), dung</td>
</tr>
<tr>
<td>FE2</td>
<td>C$_3$ plants (27.8‰), savanna grasses (12.9‰), dung</td>
</tr>
<tr>
<td>LE1</td>
<td>Willow (28.98‰)</td>
</tr>
<tr>
<td>LE2</td>
<td>Corn (12.64‰), willow (28.98‰)</td>
</tr>
<tr>
<td>LE3</td>
<td>Corn (12.64‰), willow (28.98‰), corn + willow</td>
</tr>
<tr>
<td>LE4</td>
<td>Wood (26.75‰)</td>
</tr>
<tr>
<td>LE5</td>
<td>Corn (11.98‰) + Wood (26.75‰)</td>
</tr>
</tbody>
</table>

![Graph showing 13C signatures for field campaigns](image)
The diagram represents the δ\(^{13}\)C\(_{OC}\) for willow and corn (Lab).

- Delta value of OC for willow is higher than \(^{13}\)C signature of fuel.
- Delta value of OC for corn is slightly lower than \(^{13}\)C signature of fuel.
Impact of MCE and moisture on $\delta^{13}C_{OC}$

- Modified combustion efficiency, MCE = $\Delta CO_2 / (\Delta CO_2 + \Delta CO)$
- MCE seems to have no relation
- With moisture delta value increases
Results: Delta 13C vs %Corn (Lab)

- Not linear: For a 50-50% mixture delta 13C of OC is closer to 13C signature of corn than that of willow.
Results: OC/EC Ratio vs %Corn (Lab)

- OC/EC ratio of Corn is higher than that of willow
- OC/EC ratio increases with increasing proportion of corn in the mixture.
Results: Delta 13C (Field Campaign)

- δ^{13}C: -25‰ to -22‰
- Delta value: close to 13C signature of C$_3$ plants
Conclusion & Discussion

• LAB: δ^{13}C values of OC: close to 13C signature of fuel
• Mixture of corn & willow: corn (C4) => higher contribution
• Field: δ^{13}C values of OC: close to 13C signature of C_3 plants

• C_3 plants => higher contribution in Savannah fire
 • Mass of trees vs grasses
 • C_3 plants burn longer – C_4 grasses burn faster
 • Aerosol collection
 • Impact of moisture
 • Impact of combustion efficiency

• Further investigation: future research
Acknowledgements

Help in the lab:
PhD students: Katrin Zenker, Peng Yao
Technicians: Romke Tjolker, Henk Jansen

Biomass samples from the field:
Cristina Santín, Department of Geography, College of Science, Swansea University