

Stable carbon isotopic composition of biomass burning emissions – implications for estimating the contribution of C3 and C4 plants

Ulrike Dusek¹, Roland Vernooij², Anupam Shaikat¹, Chenxi Qiu³, Elena Popa³, Patrik Winiger², Nick A. J. Schutgens², Guido R. van der Werf²

¹Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, the Netherlands

² Earth and Climate Cluster, Faculty of Earth and Life Sciences, VU University Amsterdam, the Netherlands ³ Institute for Marine and Atmospheric research Utrecht, Utrecht University, the Netherlands

Savannah Fires in Africa

How much of the emissions stem from C3 vs C4 plants?

¹³C for distinguishing C3 and C4 plants

How much of the emissions stem from C3 vs C4 plants?

Experimental Setup: δ¹³C-thermogram system

Research Question

How do C_3 and C_4 plants in the savannah fires contribute to the ORGANIC CARBON?

Methodology

Overview of African biomass fuels

¹³C signatures (filed campaigns)

- Delta value of OC for willow is higher than ¹³C signature of fuel
- Delta value of OC for corn is slightly lower than ¹³C signature of fuel

- Modified combustion efficiency, MCE = $\Delta CO_2 / (\Delta CO_2 + \Delta CO)$
- MCE seems to have no relation

ÿ

university of groningen

• With moisture delta value increases

Results: Delta ¹³C vs %Corn (Lab)

• Not linear: For a 50-50% mixture delta ¹³C of OC is closer to ¹³C signature of corn than that of willow.

Results: OC/EC Ratio vs %Corn (Lab)

- OC/EC ratio of Corn is higher than that of willow
- OC/EC ratio increases with increasing proportion of corn in the mixture.

Results: Delta ¹³C (Field Campaign)

- δ¹³C : -25‰ to -22‰
- Delta value: close to ¹³C signature of C₃ plants

Conclusion & Discussion

- LAB: $\delta^{13}C$ values of OC: close to ^{13}C signature of fuel
- Mixture of corn & willow: corn (C4) => higher contribution
- Field: $\delta^{13}C$ values of OC: close to ^{13}C signature of C_3 plants
- C₃ plants => higher contribution in Savannah fire
 - Mass of trees vs grasses
 - C₃ plants burn longer C4 grasses burn faster
 - Aerosol collection
 - Impact of moisture
 - Impact of combustion efficiency
- Further investigation: future research

Acknowledgements

Help in the lab: PhD students: Katrin Zenker, Peng Yao Technicians: Romke Tjolker, Henk Jansen

Biomass samples from the field: Cristina Santín, Department of Geography, College of Science, Swansea University