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Introduction
∙ Pluvial (or surface water floods) are caused by rainstorms over urban areas, where the rainfall 

intensity exceeds the capacity of the urban drainage system

∙ Pluvial floods have caused severe damage in recent years in many cities around world 

∙ Pluvial floods are different from other flood types (such as river flooding or storm surges):
• Can cause flooding in areas not obviously flood prone (e.g. far away from any water 

bodies)
• Often caused by fast moving highly localized convective storm cells (even in smaller cities 

one neighborhood can be flooded while other neighborhoods stay dry)
• Short early warning lead times (up to a few hours)
• Structural flood protection (levees, dams etc.) often not viable (no well-defined source of 

flooding, such as a river, reservoir or the sea)
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Motivation
Why impact-based forecasting of pluvial floods?
∙ Current warning systems for pluvial floods are in most areas limited to severe weather warnings 

with limited information:
• Expected amount of rainfall and/or rainfall intensity
• Affected areas (districts or regions)
▸ Information often not sufficient to decide when, where and how to prepare for a pluvial 

flood event (for private households, businesses and emergency responders)
∙ Impact-based forecasting systems can help to improve warnings by providing information on 

areas that are expected to flood alongside the expected impacts (e.g. inundation depth, direct 
damage to buildings)

Challenges
▸ Short lead time of rainfall forecast vs. long calculation times of hydro-dynamic models
▸ High uncertainties regarding flooded areas, magnitude and impacts
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Impact-based forecasting &
 early warning framework
(click on model components for details)
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• Model chain containing:
▪ Short-term rainfall forecast module
▪ Inundation model
▪ Contaminant transport model
▪ Damage model

• Database model containing 
pre-calculated surface inundation and 
flow velocity fields (used for training 
artificial neural network (ANN) inundation 
model)

• Two-way warning & crowdsourcing app: 
▪ Shows impact-based forecasts
▪ Collects volunteered geographic 

information (VGI) to improve 
forecasts
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Model application

• Hindcast of pluvial event on June 22 2017 in Hannover, 
Germany (20 mm of rain in 20 minutes)

• Pluvial flood event caused widespread disruption in 
Hannover with over 500 fire runs reported

• Application of entire forecast model chain (except crowd 
sourcing and warning app, which was not yet operational 
by the time of the event)

• Comparison and validation of each model component 
against observed data to analyze sensitivity and 
forecasting skill

© Thomas Michael

© Philipp Jakob

© Peter Steffen

Pluvial flood event Hannover, Germany
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Results
Artificial Neural Network (ANN) - Inundation model

Maximum water depth:
ANN-Inundation model vs. observed

Maximum water depth:
ANN-Inundation model vs. hydro-dynamic model

• ANN-Inundation 
model agrees 
well with 
observed 
inundation

• Deviation of 
ANN-model 
from 
hydro-dynamic 
model 
(PHYSICAL) in 
the range -2 to 
+10cm
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Results
Contaminant transport and 
damage model
• Damage estimates based on 

rainfall & ANN inundation forecast 
(B & C) consistent with results based 
on observed rainfall (A)

• Slight underestimation of damage 
per building for earlier forecasts (D)

• Spread of contaminants forecast 
based (grey areas) on hypothetical 
oil spill (red square) slightly 
overestimated compared to 
observed rainfall and 
hydro-dynamic model outputs

A B

C D
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Results
Forecasting skill of rainfall model and subsequent outputs (compared to observed rainfall)

Red line: Cumulative rainfall forecast 
at 18:45 UTC in 5min steps
(start of the event): FC1845

Black line: Observed cumulative 
rainfall in 5 min steps at
nearest rain gauge

Mean water level forecast 
underestimated by 
~1.5cm for first forecast at 
18:45 UTC

Inundation [m] 

Rainfall [mm] Contamination [ha] (contaminated area) 

Damage [EUR] (direct damage to residential buildings) 
Mean damage per 
building forecast 
underestimated by EUR 
~100 at 18:45 UTC

Forecast of contaminated area 
for oil-spill scenario (hypothetical) 
overestimated by ~5ha

Rainfall forecast inputRainfall forecast input

Time UTC Rainfall forecast input
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Gauge Radar No spill No spill FC1855 FC1900

Gauge Radar FC1845 FC1850 FC1855 FC1900Gauge Radar FC1845 FC1850 FC1855 FC1900

18:40 18:45 18:50 18:55 19:00 19:05 19:10 19:15



Results
Computation time of forecasting model chain compared to benchmark models

Model component Output Forecast Benchmark Comp. time 
forecast 
[mm:ss]*

Comp. time 
benchmark 
[mm:ss]*

Rainfall forecast Cum. Rainfall 
volume [mm]

C-Band Radar merged with 80 gauge 
stations within a 128 km radius 

Closest rain gauge (< 1 km away) 00:40 -

Inundation model Max. water 
depth [m]

ANN model using rainfall forecast Physically based model using 
benchmark rainfall 

00:20 260:00

Contaminant 
transport model

Contaminated 
area [ha]

Ensemble of pre-calculated flow fields 
selected based on forecast rainfall input 

Flow field calculated with physically 
based model with benchmark rainfall 

03:30 00:39

Damage model Damage to 
building 
structure 
(residential) 
[EUR]

Maximum water depth from ANN model 
Contaminated area forecast
Additional data: building location and 
type, average household size, flood zones

Maximum water depth from ANN model 
with benchmark rainfall
Contaminated area forecast
Additional data: building location and 
type, average household size, flood 
zones

0:28 00:17

Total 04:58 260:56

➔ Computation time of forecast model significantly lower than benchmark model (5 minutes vs. 4.3 hours (!)) 
with comparable accuracy in outputs

* On a standard desktop PC
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Discussion & Limitations

∙ Accuracy of rainfall forecast needed for impact-based forecasting not reached before start 
of the rainfall event (i.e. lead times of 5-10 minutes before peak of rainfall event)

∙ Only small deviation between results based on measured rainfall compared to forecast at 
start of the rain event

∙ ANN-inundation model based on artificial neural networks produces comparable results to 
coupled hydro-dynamic model in a fraction of the time (< 1 minute compared to several 
hours) allowing for inundation forecasts in near real-time

∙ Effect of reported information on contamination for accuracy of contamination and 
damage forecasts could not be tested at this stage (mobile app was not yet operational at 
time of the event)
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Conclusions & Outlook

∙ With structural flood protection for pluvial floods often not being a viable option, impact-based 
forecasting and early warning for pluvial floods can support efficient emergency response and 
protection of lives and assets

∙ Key obstacles for impact-based forecasting are accuracy of rainfall prediction of fast-moving 
convective storm cells and long computation times of physically based hydro-dynamic 
inundation models

∙ Proposed model chain using radar-based storm tracking and rainfall forecast with neural 
network-based inundation model allowed for first reliable impact-based forecast including 
contaminated areas and expected damage 5-10 minutes before peak of the rainfall event 
(based on case study of real pluvial flood event)

∙ Early warning lead times still very short, but can support short-term capacity planning for 
emergency response

∙ Forecast model chain and app-based early warning system planned to be rolled out for pilot 
testing stage in Hannover, Germany
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THANK YOU! 

Photo by Jonathan Ford on Unsplash
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Appendix – Model components
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Short-time rainfall forecast

Back to model overview

• Based on radar data to track fast moving rain storms

• Radar data is processed for static clutters and very high values 
based on Berndt, Rabiei & Haberlandt (2014) and transformation of 
reflectivity into intensities is based on Marshall-Palmer relationship

• Radar data is merged with nearby gauge data to minimize errors

• Rainfall intensity is fed into Hyratrac forecast model (Krämer et al. 
2007) to track spatio-temporal development of storm cell

• Rainfall intensities are provided on a Cartesian Plan with 1km2 grid 
cells and a temporal resolution of 5 minutes ( Shehu & Haberlandt, 
2017)
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Inundation and flow velocity database

Back to model overview

• Coupled physically-based 
hydrodynamic model representing 
surface and sub-surface flows 

• Coupled pipe network and 2D 
surface flow model (HYSTEM-EXTRAN 
2D (HE2D))

• High resolution digital terrain model 
with 0.5m spatial resolution

• HE2D model was run with 529 extreme rainfall scenarios with return periods of 10 to 100 
years based on gauge measurements from the German Weather Service

• The resulting 529 flood maps including maximum water depth and flow velocity fields 
were stored in the data base model 

• More details can be found in Peche et al. (2017)
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Artificial Neural Network (ANN) urban inundation model

∙ Stochastic model using a trained artificial neural network

∙ ANN Model was trained using the 529 flood maps and the respective precipitation 
intensity time series from the data base model (see previous slide)

∙ The network processes the data from input to output: time series of precipitation intensities 
-> maximum water depth

∙ Model predicts maximum water depth for each grid cell of a 5m by 5m grid

∙ More details on the ANN model can be found in Berkhahn, Fuchs & Neuweiler (2019)

Back to model overview
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Contaminant transport model
∙ Lagrangean particle-based transport model

∙ Contaminant mass is represented as crowd of individual particles following the flow velocity field

∙ Mixing and dispersion based on random walk approach, adding a random jump to each 
particle’s kinematics (Ahlstrom et al. 1977)

∙ Particles can move in two dimensions on the surface and in one dimension in the pipe network

∙ No chemical reaction or deposition is considered and particles are assumed to be volume-less 
and do not change the flow field to avoid time-consuming re-calculation of flow field

∙ For the contaminant transport forecast, an ensemble of pre-calculated flow field based on 
similar precipitation events are selected from the data base model 

∙ More details in Sämann, Graf & Neuweiler (2019) and source code available here

Back to model overview
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Damage model
∙ Damage model estimates expected direct monetary damage to the building structure of 

residential buildings
∙ Probabilistic multi-variable damage model with 6 variables: water level, flood duration, 

contamination, building type, number of people living in a household and the household’s prior 
knowledge about flooding.

∙ Model developed specifically for pluvial floods based on empirical data on recent pluvial flood 
events in Germany using a Bayesian zero-inflated beta model

∙ Damage estimated as predictive distribution showing the probable range of damage per 
building (results are then aggregated on a raster grid)

∙ Damage model uses maximum water depth from ANN-model and contamination information 
from contaminant transport model. Additional model inputs come from publicly available 
information (census & OpenStreetMap data)

∙ More details in Rözer et al. (2019)

Back to model overview
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Warning app & crowdsourcing model

Back to model overview

• Crowdsourcing model gathers information from eyewitnesses to improve situation awareness and to 
validate outputs of the forecasting model

• Crowdsourcing model uses inputs from Twitter using a filtering algorithm for relevant Tweets (Feng & 
Sester 2018) and inputs from users of the mobile warning app (EVUS)

• Two-way mobile warning app allows to receive warnings and access information on impacts and 
allows users to provide real-time information to improve model outputs
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