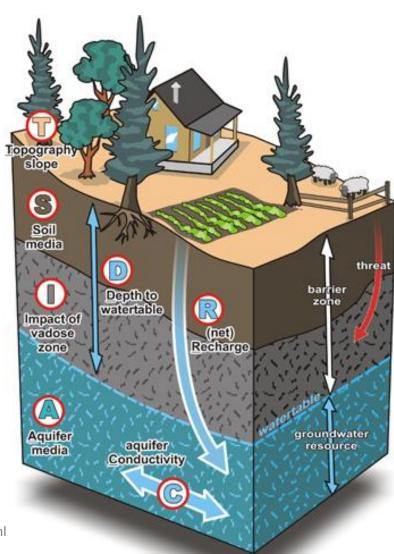


SENSITIVITY ANALYSIS OF AN INTEGRATED NUMERICAL FLOW MODEL OUTPUT TO KEY MODEL PARAMETERS USED IN COMMON QUALITATIVE VULNERABILITY **ASSESSMENT METHODS**

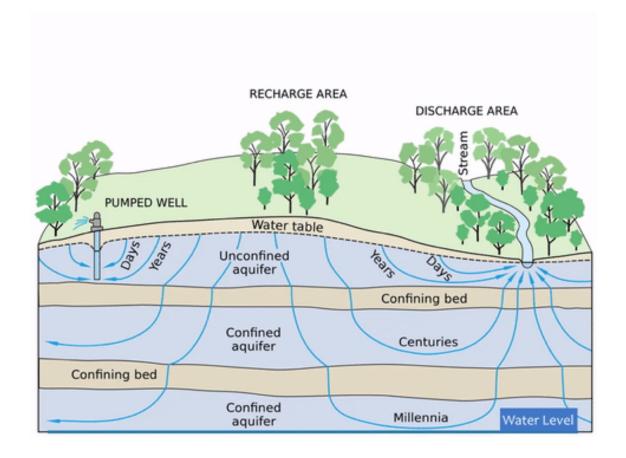
Doummar Joanna^{(1)*} and Hassan Kassem Assaad ⁽¹⁾

¹Department of Geology, American University of Beirut, PO Box: 11-0236/26 Beirut, Lebanon-*jd31@aub.edu.lb; Phone: (+961) 1 350000-4165

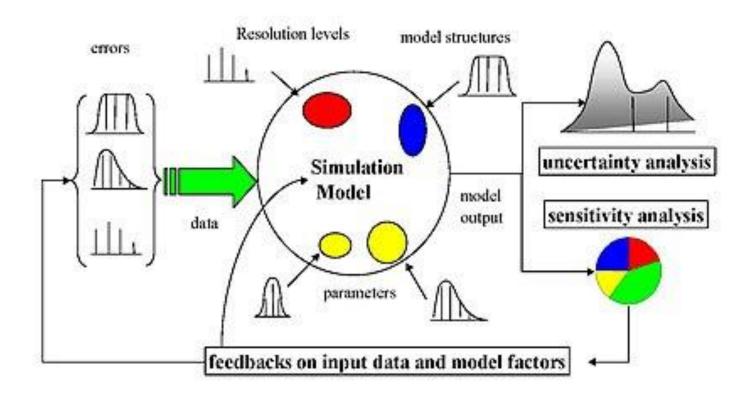


Introduction

Intrinsic groundwater vulnerability



Retrieved from: https://www.sfu.ca/personal/dallen/drastic_page.html



Groundwater Integrated Models

Retrieved from: https://www.hydrosconsult.eu/hydrology/groundwater-modelling/

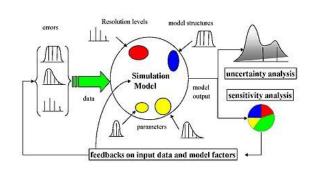
Sensitivity Analysis

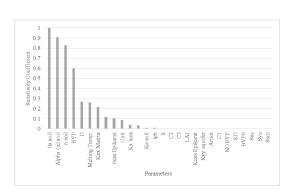
Retrieved from: https://en.wikipedia.org/wiki/Sensitivity_analysis#/media/File:Sensitivity_scheme.jpg

Introduction

Scope of work

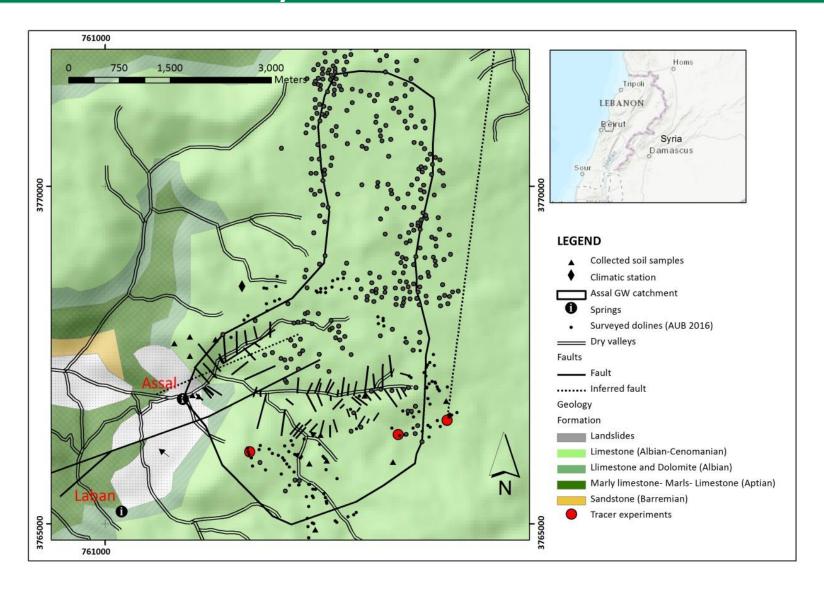
Integrated
Groundwater Model
Simulation in karst


Model Local Sensitivity

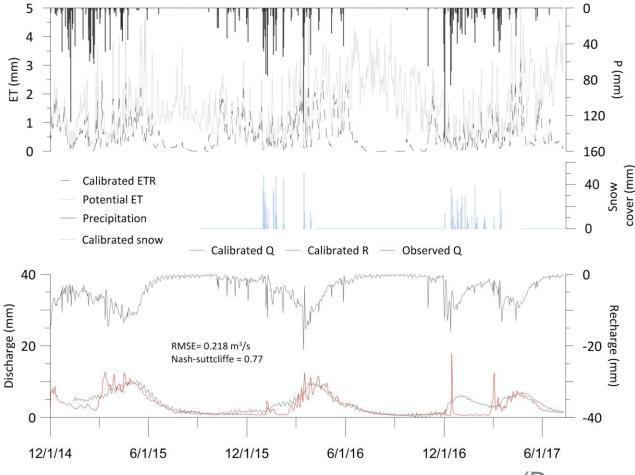

Sensitivity
Analysis on Model
Parameters

Statistical analysis of model output

Parameters Weighing and impact on Vulnerability according to the quantified impact of Model parameters on model output



Study Area



*AUB Tools and Methods

- 1. Integrated flow model
- 2. Automatic sensitivity analysis
- 3. Time series manual statistical sensitivity analysis

Integrated Flow Model

- Mike She (DHI, 2017) used as numerical engine
- Transient calibrated model (Nash-Sutcliffe=0.77, and RMSE = 0.218 m³/s)

Selection of parameters Integrated Flow Model

Selection of main parameters for testing and variations in the corresponding karst compartments:

- 1. Atmosphere (precipitation)
- 2. Unsaturated zone (lithology, soil, and epikarst)
- 3. Land use and geomorphological features
- 4. Karstic features (highly conductive lens and dolines)
- 5. Saturated zone (lithology)

Automatic Sensitivity Analysis

- Local sensitivity analysis
- Central approximation method

$$\begin{split} S_i &= \frac{\partial F}{\partial \theta_i} \\ \Delta \theta_i &= f_c \theta_i \\ \Delta \theta_i &= f_c \left(\theta_{i,upper} - \ \theta_{i,lower}\right) \\ S_i &= \frac{F(\theta_1, \theta_2, \dots, \theta_i + \Delta \theta_i, \dots, \theta_n) - F(\theta_1, \theta_2, \dots, \theta_i - \Delta \theta_i, \dots, \theta_n)}{2\Delta \theta_i} \end{split}$$

Where

F is the output measure

 θ i is the model parameter

Fraction of the parameter interval

Θi,upper and Θi,lower are the specified limits of the parameter

Manual Statistical Analysis

Varied parameters from (COP and EPIK)

Manual statistical analysis based on one parameter variation at a time by applying three methods:

- 1. Preliminary model performance measures
- 2. Variance-based sensitivity assessment methods
- 3. Geomorphology qualitative assessment

AUB Tools and Methods

Manual Statistical Analysis

1. Preliminary model performance measures

Performance measure	2	Selection criteria and ranking	Impact on vulnerability
Residual Mean Square Error (RMSE)	$RMSE = \frac{1}{n} \sqrt{\sum_{i=1}^{n} (S_i - C_i)^2}$	RMSE closer to 0	
Nash Sutcliffe coefficient (E)	$E = 1 - \frac{\sum (S_i - C_i)^2}{\sum (S_i - \frac{1}{n}(\sum S_i))}$	Closer to 1	Integrated sensitivity of the calibrated model in response to parameters variations
Coefficient of determination (R ²)	$R^2 = 1 - \frac{\sum (S_i - C_i)^2}{\sum (C_i - \overline{C})^2}$	Closer to 1	
Recession Coefficient (α)	$\alpha = \frac{1}{t} \ln \frac{Q_{max}}{Q}$	Closer to calibrated	Sustainable volume available for dilution and aquifer response to upper hydrological compartments
Maximum (Q_t)	Maximum (Q_t)		
Minimum (Q_t)	Minimum (Q_t)	Closer to calibrated	Sustainable volume available for dilution
Mean (Q_t)	Mean (Q_t)		
Kling-Gupta Coefficient (KGE)	$1 - \sqrt{(r-1)^2 + (\beta-1)^2 + (\gamma-1)^2}$		Model performance and Volume available for dilution

Manual Statistical Analysis

2. Variance-based sensitivity analysis methods (Song et al. 2015)

Local Sensitivity Measure	Ranking Criteria	Relationship with groundwater Vulnerability
Discharged Volume (V) $\frac{\sigma^2(Parameters\ Variation)}{\sigma^2(V)}$		Volume available for dilution
Mean Spring Discharge (Qt) $\frac{\sigma^2(Parameters\ Variation)}{\sigma^2(Mean\ (Qt))}$	Local sensitivity and values of the measures are inversely proportional to parameter	Sustainable volume available throughout the hydrological year
Sum of Residuals (R) $\frac{\sigma^2(Parameters\ Variation)}{\sigma^2(R)}$	sensitivity	Spring discharge variations that can show groundwater quantities deviations

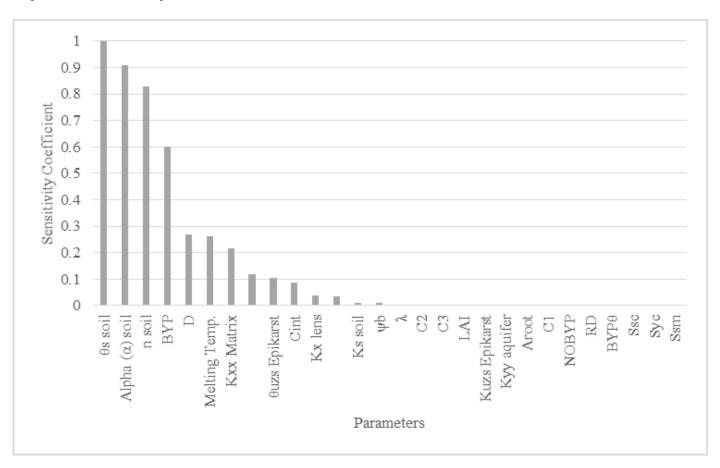
AUB Tools and Methods

Manual Statistical Analysis

3. Geomorphology qualitative assessment

Slope Steepness	Surface Exposed Material
	Bare-Rock (Fractured
Very Steep (> 35°)	Limestone)
	Doline (Clayey Soil)
	Bare-Rock (Fractured
Very Gentle (0°-5°)	Limestone)
	Doline (Clayey Soil)

1. AUTOCAL results and analysis


2. Time series statistical analysis results

- Preliminary statistical assessment
- Variance based methods assessment
- Geomorphology and slope impact on groundwater vulnerability
- Modeling-based parameters ranking compared to qualitative methods coefficients

AUTOCAL Results and Analysis

Graphical representation of AUTOCAL outcomes

AUTOCAL Results and Analysis

Most Sensitive Parameters:

- •Unsaturated zone soil hydraulics (θ s soil saturated moisture content, and α and n Van Genuchten water retention curve empirical parameters)
- •BYP (bypass portion of net rainfall)

Moderately Sensitive Parameters:

- •Climatic Parameters: (Degree Day Coefficient (D) and melting temperature)
- •Hydraulic conductivity of the Aquifer and highly conductive lens

Least to none sensitive parameters:

- Vegetation cover
- Epikarst empirical parameters
- •Soil hydraulic properties that play a role in fast infiltration other than BYP

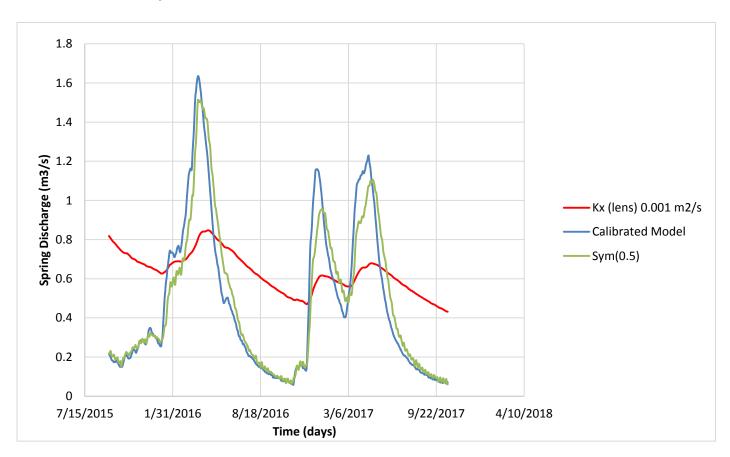
Time Series Statistical Analysis Results Preliminary Statistical Assessment

• Preliminary statistical assessment

RMSE: aquifer Sy (least sensitive 0.11 m³/s)

KGE: most sensitive (soil thickness, hydraulic conductivity of aquifer and lens)

Discharge related function: bypass did not affect spring discharge trends


- Conclusions
- 1. Specific yield and saturated moisture content (θ s) variations from the calibrated parameter value have increased groundwater vulnerability;
- 2. Soil thickness is inversely proportional to groundwater vulnerability; and
- 3. Higher hydraulic conductivity values of the highly conductive zone and the aquifer increase groundwater vulnerability.

Time Series Statistical Analysis Results

Preliminary Statistical Assessment

Preliminary statistical assessment

Time Series Statistical Analysis Results

Variance Based Methods Assessment

• Variance based methods assessment Year 1 (2015-2016)

Objective Function	σ²(parameter) / σ² (Yearly Discharged Volume)	$σ^2$ (parameter)/ $σ^2$ (Σr)	σ² (parameter)/ σ² (Q mean)	Rank
Varied Parameters				
K lens (m/s)	1.86E-05	1.09E-03	2.40E+00	1
Precipitation	2.97E-05	3.00E-05	2.91E+00	2
Saturated moisture content (θs)	8.80E-05	2.11E-07	1.13E+01	3
Log(K aquifer (m/s))	2.30E-02	2.30E-02	2.13E-04	4
Temperature	9.20E-02	8.72E-02	9.02E+03	5
Bypass	1.36E-01	1.36E-01	1.75E+04	6
Soil thickness(m)	1.95E-01	1.95E-01	2.52E+04	7
Specific Yield	2.73E-01	2.73E-01	3.52E+04	8

Time Series Statistical Analysis Results *Variance Based Methods Assessment*

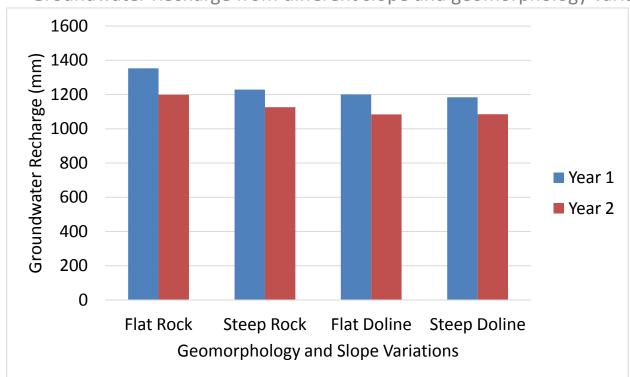
Variance based methods assessment Year 2 (2016-2017)

Objective Function	σ² (par)/ σ² (Yearly Discharged Volume)	$σ^2$ (parameter)/ $σ^2$ (Σr)	σ² (parameter)/ σ² (Q mean)	Rank
Varied Parameters				
Precipitation	2.97E-05	3.00E-05	2.91E+00	1
Saturated moisture content (θs)	1.34E-04	1.96E-07	2.28E+01	2
K lens (m/s)	3.12E-05	5.31E+00	5.31E+00	3
Log(K aquifer (m/s))	4.11E-02	5.05E-04	5.05E-04	4
Temperature	9.20E-02	8.72E-02	9.02E+03	5
Bypass	1.50E-01	2.56E+04	2.56E+04	6
Soil thickness(m)	4.81E-01	8.20E+04	8.20E+04	7
Specific Yield	2.30E+00	3.93E+05	3.93E+05	8

Time Series Statistical Analysis Results *Variance Based Methods Assessment*

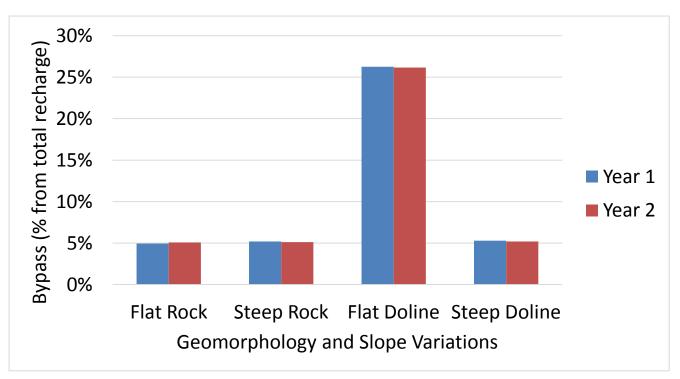
Variance based methods assessment

Variance-based Analysis Ranking


Parameter	Rank
Saturated Moisture Content	1
Precipitation	2
Hydraulic Conductivity of Lens	3
Hydraulic Conductivity of Aquifer	4
Temperature	5
Bypass	6
Soil thickness	7
Specific Yield Aquifer	8

Time Series Statistical Analysis Results Geomorphology and Slope Impact on Groundwater Vulnerability

Geomorphology and slope impact on groundwater vulnerability



Time Series Statistical Analysis Results Geomorphology and Slope Impact on Groundwater Vulnerability

Geomorphology and slope impact on groundwater vulnerability

Bypass flow recharge from different slope and geomorphology variations

ATIR Conclusions and Recommendations

Conclusions:

- A. Ranking of parameters:
 - 1. Soil hydraulics factors
 - Climatic factors
 - 3. Aquifer along with highly conductive lens hydraulic factors
- B. Geomorphological features have shown a decent impact on recharge trends and total volume
- C. Vegetation cover have shown negligible impact on vulnerability
- D. Modeling approach more efficient in terms scale and processes
- E. Avoid over estimation of vulnerability classification

Limitations and recommendations:

- A. Applying the global sensitivity approach for analysis
- B. Conclusion depicted from this work shall be only applied on areas of similar environmental settings
- C. Validation of this research's results by applying in other study areas