Application of Copernicus Global Land Service vegetation parameters and ESA soil moisture data to analyse changes in vegetation with respect to the CORINE database

Hajnalka Breuer¹, Amanda Imola Szabó¹

#shareEGU20, 6 May 2020, 14:00-15:45

(1) Eötvös Loránd University, Department of Meteorology, bhajni@nimbus.elte.hu
Data

- CORINE 2012 land cover
- Original 100 m resolution upscaled to 0.25° resolution
- Upscaling: most abundant land cover in 0.25° x 0.25° grid cell
Data

- ESA soil moisture v.4.4 (SMOIS) database (Gruber et al., 2017, 2019; Wagner et al., 2017)
 - Active and passive sensor combined satellite data
 - 0.25° resolution
 - Upper soil layer (2-4 cm) moisture
 - Available period: Nov. 1978 to June 2018
 - Used period: 2000-2018 => to be able to combine it with satellite vegetation indices
 - Daily data => monthly averages
Data

- COPERNICUS Global Land Service database
 - SPOT-VGT and PROBA-V satellite sensors
 - Leaf area index (LAI) and gross dry matter productivity (GDMP)
 - 1 km resolution interpolated to 0.25° resolution (second-order conservative mapping)
 - Period: 2000-2018, every 10 days
Method - vegetation period

- Verger et al. (2016)
- Based on annual amplitude (A) variation
 - start of season (SOS): \(A \cdot 0.3 + \min(LAI) \)
 - end of season (EOS): \(A \cdot 0.4 + \min(LAI) \)
Method - vegetation period

- Wang et al. (2017)
- Originally developed for NDVI data for wheat
- Based on cumulated NDVI gradient
- Instead of NDVI LAI is used (cLAI)
 - y: 6th-order fitted polynomial function of cLAI
 - SOS: max(K), K - curvature of y
 - EOS (Verger et al., 2016):
 \[A \cdot 0.4 + \text{min}(\text{LAI}) \]
 \[K = \frac{y''}{\sqrt{(1 + y'^2)^3}} \]
Difference in start of season methods

- Correlation of the two method is high, but there are exceptions.
- When:
 - the intra-annual variation of LAI is low (e.g. coniferous forests in mid-latitudes)
 - there are variations in LAI in winter (DJF) months
 - there are two green-up phases, one around February and one in March/April

Correlation between Verger et al. (2016) and Wang et al. (2017) start of season estimations
Results - correlation between soil moisture and vegetation

- LAI and GDMP trends are mostly positive in Europe
- Soil moisture decreases in the Alps, in the Carpathian Mountains, in the Iberian Peninsula and in Scandinavia
- In Eastern Europe soil moisture changes drive the vegetation greenness (also true for Iberian Peninsula, but correlations are not high)
- In cold climates decreasing soil moisture effect is superseded with temperature increase effect
Results - correlation between soil moisture and vegetation

- End of season increases in Germany, Poland, most of Great Britain, eastern Iberian Peninsula.
- End of season decreases in Scandinavia, in the Carpathian region, in western France and in western Iberian Peninsula.
- Increasing summer soil moisture is most likely to extend the vegetation period.
- Despite the increase of LAI in Scandinavia the vegetation period decreases due to lower soil moisture availability.

Correlation between summer (Mar.-Aug.) average SMOIS and end of season dates, positive SMOIS trends are noted with diagonal hachures.
Results - correlation between soil moisture and vegetation

- Soil moisture and GDMP correlations are generally lower than LAI-soil moisture.
- Soil moisture decrease in the eastern Carpathian ranges and in the Alps show stronger negative correlation than LAI.
- In the British Isles there is a correlation sign change compared to the LAI correlations.

Correlation between annual average SMOIS and summer (Mar.-Aug.) GDMP, positive SMOIS trends are noted with diagonal hachures.
Results - trends and land cover

- Length of season (LOS) changes:
 - Though LAI and GDMP increases in every season, and SOS shows a small decrease the end of season (EOS) decreases
 - Differences in LOS stem from the two SOS determination methods are a combination of decreasing EOS and SOS days
 - In case of Wang et al. (2017) more gridpoints have 0 slope, resulting in lower land cover types.

Trend of the length of vegetation period (Verger et al., 2016) [only land use types with over 150 grid points are shown]

Trend of the length of vegetation period (Wang et al., 2017) [only land use types with over 150 grid points are shown]
Results - trends and land cover

Strength of trends

- LAI and GDMP trends show a significantly increasing trend
- Significant LAI changes are observed for almost 90% of coniferous and mixed forests.
- GDMP trend variation between land cover types is larger than for LAI.
- Peat bogs and moors show almost no significant trends.
- Despite lower LAI changes GDMP mostly increases for complex cultivation, for deciduous forests and for sclerophyllous vegetation.

[Bar charts showing ratio of significant (p<0.05) and all gridpoints for annual LAI trend and summer (Mar.-Aug.) GDMP trend, only land use types with over 150 grid points are shown]
References

Acknowledgement

- Hajnalka Breuer’s work was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and by the ÚNKP-19-4 New National Excellence Program of the Ministry for Innovation and Technology.