Comparing permanent deformation and seismic asperities in the 2015 Illapel earthquake rupture zone

Roland Freisleben, Julius Jara-Muñoz, Daniel Melnick, and Manfred Strecker
Giant subduction earthquakes: non-uniform slip distribution, regions of pronounced slip → asperities

Asperities: persistent geologic features or the cause for dynamic processes of elastic strain release?

Study seismic asperities at different time scales: geodetic GPS time series vs. permanent deformation (emerged marine terraces)
Segmentation of subduction-zone megathrusts in down-dip failure domains

→ interaction during the seismic cycle?

Permanent deformation may be accumulated during giant EQ

Deformation cycle not completely elastic, strain partly stored as permanent deformation
Questions

(1) During which phase of the seismic cycle does permanent coastal uplift accumulate?

(2) What mechanisms control the accumulation of permanent deformation? What is the role of seismic asperities in the accumulation of permanent deformation?

(3) Are seismic asperities sustained over time scales involving several 10^3 to 10^5 years?
Methods

(1) Determination of shoreline-angle elevations from wave-cut marine terraces using TerraceM software for MATLAB® (Jara-Muñoz et al., 2016) and TanDEM-X data

(2) Time-series analysis of permanent GPS stations

(3) In preparation: IRSL dating, U/Th series dating of pedogenic carbonate rinds to determine the terrace chronology
Interseismic locking before the Illapel earthquake and coseismic slip (after Melnick et al., 2017)

Circles (black/white gradient) indicate uplift rates calculated from MIS-5 terrace elevations

Vectors show interseismic displacement rates (blue) and coseismic vertical displacements (white) estimated from permanent GPS stations
Latitudinally varying uplift rates (profile C-D, see previous figure) and temporal changes between terrace levels

Histogram for terrace elevations of MIS-5, MIS-9, and MIS-17
Median and min./max. uplift rates of the three most prominent terrace levels in the Illapel area

Uplift rates decrease from MIS-17/MIS-9 terrace levels to around 0.23 mm/yr for the MIS-5 terrace level
Uplift rate of the MIS-5 terrace level displayed against several coseismic and interseismic deformation estimates (profile C-D)

→ vertical surface displacement (coseismic)

→ coseismic slip

→ interseismic locking

Vertical surface displacement after Barnhart et al., 2016; coseismic slip and locking after Melnick et al., 2017
Uplift rate of the MIS-5 terrace level displayed against several coseismic and interseismic deformation estimates (color-coded by distance along profile C-D): possible trends?
Conclusions and future work

Uplift rates decrease from older (MIS-9/MIS-17) to younger (MIS-5) terrace levels from 0.53 mm/yr to 0.23 mm/yr.

Uplift rates vary latitudinally, more pronounced for MIS-9 than for MIS-5 terrace levels. There is no clear correlation of the youngest level (MIS-5) with seismic cycle deformation patterns.

Future work will include:

- More GPS time series and shoreline angle mapping of an extended area (27°-34°S).
- IRSL and U/Th dating to close gaps in the terrace chronology and verify existing ages.
- Analysis of high-resolution drone topography, especially for small-scale beach ridges.
References

