High temporal resolution 13C tracing to link xylem–phloem pathways of carbon in oak trees

Akira L. Yoshikawa1*, Jasper Bloemen1,2, Johannes Ingrisch1, Henrik Hartmann3, Michael Bahn1

1. Institute of Ecology, University of Innsbruck
2. Department of Biology, Centre of Excellence PLECO, University of Antwerp
3. Department of Biogeochemical Processes, Max-Planck Institute for Biogeochemistry
Tree’s C and hydraulic cycle

• Photosynthesis assimilates CO₂ to form sugar.

• Sugar is transported to above- & belowground organs to support C sinks.

• CO₂ is released back to the atmosphere through plant respiration and soil respiration.
Fate of respired CO$_2$

- Living cells of plant (e.g. parenchyma) respire CO$_2$ which is released to the atmosphere from the bark.

- Internal transport of dissolved CO$_2$ has been often ignored.
Upward and downward transport of C

- Results in underestimation of belowground respiration
- Potential re-fixation in leaves and green bark
- Unaccounted local source of C
Motivations of the research

Observe upward and downward movement and dynamics of C in trees, connecting above and belowground tissue.

Trace the fate of phloem transported sugar and xylem transported CO$_2$ in high temporal resolution.

Observe potential mixing of C in xylem and phloem through lateral transport and CO$_2$ re-fixation.
Methods: Xylem–phloem dual-labeling

- We used two types of pulse labeling to trace C in young oak trees (*Quercus rubra*; *n* = 3):
 - **Canopy 13CO$_2$ labeling** (*n* = 3) and **xylem 13CO$_2$ infusion labeling** (*n* = 4)

- The goal is to trace detect **phloem transported CO$_2$** and **xylem transported CO$_2$** in respiration and biomass.

- We also aimed to detect connectivity between the two pools of C (transfer between the two)

- Experiment was conducted in Innsbruck University Botanical garden during 2015 and 2016 by Jasper Bloemen
Methods: Canopy 13CO$_2$ labeling

- Labeling chamber
- Isotope-ratio infrared spectroscopy
- 99% 13CO$_2$
- High resolution time-series data
Methods: Xylem $^{13}\text{CO}_2$ infusion labeling

- $^{13}\text{CO}_2$ gas was dissolved in DI water amended with KCl
- Infused water was carried upward on xylem stream.
• Label follows a decay due to depletion of label

• Short mean residency time for xylem infused 13CO$_2$ (5 - 16 h)

• Xylem infused 13CO$_2$ remained in CO$_2$ efflux several days after labeling
Residuals of **canopy labeled tree**

- Residual of fitted model shows diurnal pattern of **excess 13CO$_2$ efflux**, primarily driven by dynamics of respiration.

- **Isotopic composition** (atom fraction) of CO$_2$ efflux doesn’t show a clear diurnal pattern.
Residuals of xylem labeled tree

- Residual of fitted model shows increased daytime excess 13CO$_2$ efflux from the stem.

- Isotopic composition (atom fraction) of stem efflux also show a diurnal pattern.
Potential mechanisms of diurnal 13C dynamics in xylem labeled trees

- Increased degassification of infused CO$_2$ due to increased temperature or stem CO$_2$ concentration driven by respiration.
- Incorporation of infused CO$_2$ in respiratory substrate.
- Effects from diurnal change in sap flow
Xylem infused $^{13}\text{CO}_2$ were found in stem phloem at various height.

Strong ^{13}C signal in petiole and veins suggests recycling of xylem transported CO_2 as a source of sugar.
\(^{13}C \) labels found in biomass after **canopy labeling**

Lateral transport of C from phloem to xylem was observed after canopy labeling.
Conclusion

• Soluble sugar from phloem were laterally transported to inner xylem within a few days.

• CO₂ transported upward through xylem had relatively short residency time, but was re-assimilated as soluble sugar.

• Pathway of xylem transported CO₂ and phloem transported sugar is linked, connecting two of the C pools within a few days.