Dense seismic array observations of spatial and temporal channels in subglacial hydrology in an Alpine Glacier

Welcome to our online presentation.
We propose a different format than the traditional oral presentation with more detailed and interactive materials ().

Challenges
Investigating the spatial organisation of the drainage system through time is a challenge for both the glaciological and the seismological communities.
This study aims at bringing new insights on the subglacial hydrology spatial dynamics using dense array seismic observations and combining phase and amplitude approaches to locate subglacial water flow.

Outcomes
The phase-driven approach shows an evolution in noise sources that represents the transition from a distributed drainage system toward the development of one main subglacial channel.
The amplitude-driven approach shows spatial pattern that are representative of the subglacial water pressure.

We are capable of investigating subglacial water flow properties in space and in time.
Challenges in subglacial hydrology and seismological opportunities

Subglacial hydrology strongly modulates glacier basal sliding, and exerts a major control on ice loss and sea-level rise.

The subglacial drainage system of hard-bedded glacier is considered to be composed of a widespread inefficient drainage system with slow and pressurized water flow (cavities) and of a localized efficient drainage system with faster and less pressurized water flow (channels melted into the ice).

The limited direct and spatialized observations make difficult to assess the physical processes involved in its development.

Recent work shows that seismic noise analysis may be used to retrieve the physical properties of subglacial water flow (e.g. Vore et al., 2019; Lindner et al., 2020; Nanni et al., 2020).

The capability to investigate the drainage system spatial organisation and evolving properties remains to be demonstrated.

A major challenge lies in the seismic source of the subglacial channel flow that is a continuous source of noise distributed in space and likely strongly varying in time.
Dense seismic array and complementary measurements

We use the setup of the RESOLVE-Argentière experiment that consists in a one-month deployment of 98 seismic stations on the glacier d’Argentière (French Alps) at the onset of the melt season.

This site is ideal to study subglacial hydrology and its link with glacier dynamics.

In this location subglacial water flow strongly influence glacier dynamics (Vincent and Moreau, 2016; Gimbert et al., in review) and generate a continuous seismic noise (Nanni et al., 2020) which is expected to be both spatially continuous outside and inside of our seismic array.

Monitoring setup with aerial view of the field on top of the surface elevation.
Seismological and glaciological context

The early spring period is the onset of the melt season, when the subglacial hydrology network strongly evolves.

Water discharge increases from 0.1 to 3 m3.sec$^{-1}$ because of increasing surfaced melt driven by c. 5°C increase in surface temperature.

The glacier surface velocity shows a clear peak as Q reaches its first peak. As Q reaches its higher values, surface velocity is however near its minimum.

The median seismic power over the 98 nodes shows variations with discharge that are most pronounced in the [3-7] Hz frequency band. We focus on this band to study subglacial hydrology.

Timeseries of physical quantities measured at Glacier d'Argentière.

Listen to the sound of subglacial water flow
Seismological methodology: amplitude and phase analysis

Amplitude analysis:
Investigate spatial heterogeneity in the amplitude.

The closer to the sources the higher the amplitude.

Phase analysis:
We recursively match the phase delays of a model-based synthetic wave field (“trial source”) to the phase delays observed between the sensors over the array.

We use here a probabilistic approach to locate up to 29 sources per second and then stack sources over time.

© 2020 Ugo Nanni. All rights reserved.
Spatial seismic properties and inversion of hydraulic properties

We selected one pattern from the phase and amplitude outputs and compared its temporal evolution to hydraulic properties.

Temporal evolution is evaluated from 2D cross-correlation of the selected pattern to the other temporal windows.

Hydraulic properties are inverted from the seismic and discharge measurement (Nanni et al., 2020)

The amplitude anomalies suggest two main channels at the centre of the glacier with a similar orientation as the highest probability of location.

Amplitude anomalies are sensitive to change in pressure conditions. Phase’s source location is sensitive to channels size development.

© 2020 Ugo Nanni. All rights reserved.
Ongoing work, perspectives and opportunities ...

Dense seismic observations:
- **Directly map** spatial evolution of subglacial hydrology
- Capture distributed and channelized systems

Subglacial hydrology:
- **Cavity-channels** transition occurs in less than 4 days
- Main channel located at the minimum of **hydraulic potential**
- New constrains for subglacial hydrology **models**

Easily deployable in remote areas (Greenland, Antarctic ...)

One of the first direct observation

Papers on this study and the RESOLVE-Argentière experiment soon to be out ...

About me:
- Finishing my Phd in September after 3 years in Grenoble
- Looking to further investigate glacier processes using passive/active seismic
- Looking to test our approaches on **new glaciological context**
- **Looking for future collaborations**

Looking forward to further discussing with you !!

ugo.nanni@univ-grenoble-alpes.fr

Have a look at our drawings about glaciology

Quantification of seasonal and diurnal dynamics of subglacial channels using seismic observations on an Alpine glacier

Ugo Nanni*, Florent Gintert*, Christian Vincent*, Dominik Grift*, Fabian Walter*, Luc Prie*, and Luc Magri*